×
26.08.2017
217.015.de1c

Результат интеллектуальной деятельности: Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Вид РИД

Изобретение

№ охранного документа
0002624688
Дата охранного документа
05.07.2017
Аннотация: Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки, включает магистраль подачи рабочего тела в двигатели электроракетной двигательной установки, измерительную магистраль с установленным на ней датчиком давления, в него введены нормально открытый отсечной клапан и дополнительный баллон, установленные на измерительной магистрали последовательно между баллоном электроракетной двигательной установки и датчиком давления, при этом дополнительный баллон имеет объем в 500…1000 раз меньше, чем у баллона электроракетной двигательной установки, и снабжен нагревательным элементом и датчиком температуры. Техническим результатом изобретения является возможность измерения в любой момент эксплуатации ЭРДУ как в космосе, так и в наземных условиях массы рабочего тела. 2 н.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи (СХП) рабочего тела ЭРДУ.

Электроракетные двигатели (ЭРД) с замкнутым дрейфом электронов, такие как стационарные плазменные двигатели (СПД), двигатели с анодным слоем (ДАС), а также ионные двигатели (ИД), традиционно используют плазмообразующие вещества с большим атомным весом и низким потенциалом ионизации.

В настоящее время во всем мире в качестве рабочего тела указанных выше ЭРД используют тяжелый инертный газ ксенон, имеющий атомный вес (131,3) и сравнительно низкий потенциал ионизации (12,1 эВ). По своим физическим свойствам и складированию он превосходит все остальные газы: при давлении 760 мм рт.ст. и температуре 20°С плотность составляет 0,00589 г/см3. Он химически инертен и не конденсируется на элементах конструкции космического аппарата (КА) (Холловские и ионные плазменные двигатели для космических аппаратов / О.А. Горшков, В.А. Муравлев, А.А. Шагайда; под ред. акад. РАН А.С. Коротева. - М.: Машиностроение. - 2008, с. 20).

Например, для КА «Ямал-200» (Разработка, создание и эксплуатация ЭРД и ЭРДУ в ОКБ-1 - ЦКБЭМ - НПО «Энергия» - РКК «Энергия» (1958-2010) / В.Г. Островский, Ю.И. Сухов. - Ракетно-космическая техника. Труды РКК "Энергия". Сер. XII. Вып. 3-4, 2011 г., с. 137) максимальная масса ксенона, заправляемого в баллоны объединенной двигательной установки (ОДУ) - 125 кг. ОДУ, использующая рабочее тело ксенон, включает электроракетную двигательную установку (ЭРДУ) и газовые двигатели (ГД).

Эксплуатационный диапазон температуры хранения ксенона в полете от 273 до 313 K.

При температуре выше критической (Ткр=289,7 K) ксенон находится в газообразном состоянии, и его масса определяется по измеряемому давлению и температуре.

Однако при температуре ниже критической ксенон находится в двухфазном состоянии, и оценка его количества практически невозможна. В таком состоянии ксенон в баллоне находится в течение большей части времени эксплуатации ОДУ.

При давлении в баллонах ниже ~ 40 кс/см2 ксенон будет в газообразном состоянии во всем эксплуатационном диапазоне температуры и его запас определяется по давлению и температуре.

Точность оценки запаса ксенона соответствует ±3 месяцам работы ОДУ.

ОДУ на рабочем теле «ксенон» включает в себя систему хранения и подачи (СХП) рабочего тела, аппаратуру питания и управления, СПД, кабели, датчики давления и температуры. В качестве примера на фиг. 1 показана система хранения и подачи рабочего тела ксенона ОДУ КА «Ямал-200» на рабочем теле «ксенон», принятая за прототип устройства (Разработка, создание и эксплуатация ЭРД и ЭРДУ в ОКБ-1 - ЦКБЭМ - НПО «Энергия» - РКК «Энергия» (1958-2010) / В.Г. Островский, Ю.И. Сухов. - Ракетно-космическая техника. Труды РКК "Энергия". Сер. XII. Вып. 3-4, 2011 г., с. 120). На фиг. 1 обозначено: ШБ - баллон; ДШБ - датчик давления (в баллоне); ЭПКВ - электропневмоклапан (высокого давления); ГЗ - горловина заправочная; ДВ - датчик давления (высокого); Д - ресивер; ДР - дросселирующее устройство; АТВ - теплообменник; КПВ - клапан предохранительный; ЭПКН - электропневмоклапан (низкого давления); РН - редуктор; ДН - датчик давления (низкого); ЭКТМ - электропневмоклапан тягового модуля; Г - горловина; ЭКГД - электропневмоклапан газового двигателя; ТМ - тяговый модуль; ГД - газовый двигатель; ДКТМ - датчик давления в коллекторе ТМ; ДКГД - датчик давления в коллекторе ГД.

В данной системе хранения и подачи ксенона баллоны ШБ1 и ШБ2 постоянно гидравлически соединены, соответственно, с датчиками давления ДШБ1 и ДШБ2, а также снабжены датчиками температуры (на фиг. 1 не показаны).

Известен способ измерения массы, расхода и объема газа при выдаче его из замкнутой емкости по патенту RU 2156960, 27.09.2000, МПК: G01F 1/86 (2006/01), в котором измеряют температуру и давление газа непосредственно в замкнутой емкости и определяют расход газа из замкнутой емкости с использованием уравнения состояния газа с учетом коэффициента сжимаемости реального газа, рассматриваемого как функция двух переменных - давления и температуры. Оставшуюся массу газа в замкнутой емкости для каждого момента времени определяют по выражению

где P1 - текущее давление газа в замкнутой емкости, Па; Т2 - текущая температура газа в замкнутой емкости, K; Vδ - объем замкнутой емкости, м3; R - газовая постоянная, Дж/кг; Z - фактор сжимаемости газа, зависящий от давления и температуры газа в замкнутой емкости.

Известный способ определения массы W рабочего тела (ксенона) в баллоне (Научные основы вакуумной техники / С. Дэшман. Издательство «Мир». М., 1964. С 13; Теплофизические свойства веществ. Справочник. Госэнергоиздат. С. 17), принятый за прототип, заключается в измерении давления Р и температуры газа Т, в расчете W по формуле (1).

где: R - универсальная газовая постоянная, М - молекулярный вес газа, Z - коэффициент, учитывающий сжимаемость газа (например, для ксенона при Т=273К Z=0,995 при 1 атм и Z=0,4255 при 100 атм, зависимость линейная).

К недостаткам вышеперечисленных известных способов и устройства определения оставшейся в баллоне массы рабочего тела можно отнести то, что большую часть времени эксплуатации ОДУ невозможно оценить массу оставшегося ксенона из-за нахождения его в двухфазном состоянии. В этом случае формула 1 не применима, что в течение длительного времени (годы эксплуатации КА) не позволяет оценить оставшийся ресурс ОДУ КА. Кроме того, при заправке рабочего тела, например ксенона, в наземных условиях необходимо взвешивание заправляемого баллона, что значительно усложняет возможность заправки его в составе КА.

Задачей изобретения является возможность определения массы ксенона в баллоне ЭРДУ в любой момент времени ее эксплуатации в космосе (в частности, при нахождении рабочего тела в баллоне в двухфазном состоянии), что дает возможность оценить оставшийся ресурс ЭРДУ. Кроме того, изобретение может позволить заправлять рабочим телом баллон в составе КА, не прибегая к методу прямого взвешивания заправленного баллона.

Техническим результатом изобретения является то, что предложенным способом в предложенном устройстве может быть измерена в любой момент эксплуатации ЭРДУ как в космосе, так и в наземных условиях масса рабочего тела (газообразного при нормальных условиях), оставшаяся в баллоне электроракетной двигательной установки КА.

Кроме того, можно определить массу рабочего тела (ксенона) в баллоне, не взвешивая его, например, при его заправке, когда он находится в составе КА.

Технический результат изобретения достигается тем, что в устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки, включающее магистраль подачи рабочего тела в двигатели электроракетной двигательной установки, гидравлически связанную с баллоном электроракетной двигательной установки, измерительную магистраль с установленным на ней датчиком давления, введены нормально открытый отсечной клапан и дополнительный баллон, установленные на измерительной магистрали последовательно между баллоном электроракетной двигательной установки и датчиком давления, при этом дополнительный баллон имеет объем в 500…1000 раз меньше, чем у баллона электроракетной двигательной установки и снабжен нагревательным элементом и датчиком температуры.

Технический результат изобретения достигается и тем, что в способе определения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки, включающем измерение давления и температуры, герметизируют дополнительный баллон и нагревают его до температуры на 10…20 K выше критической температуры рабочего тела, измеряют давление Рд и температуру Тд в нем и определяют массу газообразного при нормальных условиях рабочего тела W в баллоне электроракетной двигательной установки по формуле: W=Рд М V/ Z R Тд, где Рд и Тд - давление и температура рабочего тела в дополнительном баллоне соответственно, R - универсальная газовая постоянная, М - молекулярный вес рабочего тела, V - объем баллона электроракетной двигательной установки, Z - коэффициент, учитывающий сжимаемость рабочего тела.

Сущность изобретения поясняется фиг. 2, на которой представлено устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки.

Баллон ЭРДУ 1, содержащий газообразное при нормальных условиях рабочее тело, например ксенон, гидравлически связан с магистралью подачи рабочего тела 2 в ЭРД через нормально закрытый клапан 3.

В измерительной магистрали 9 между баллоном ЭРДУ 1 и датчиком давления 4 последовательно установлены нормально открытый отсечной клапан 5 и дополнительный баллон 6, снабженный нагревательным элементом 7 и датчиком температуры 8. При этом объем дополнительного баллона 6 в 500…1000 раз меньше, чем объем баллона 1.

Так как отсечной клапан 5 нормально открыт, то фазовое состояние рабочего тела в обоих баллонах идентичное, и отношение его масс пропорционально отношению объемов баллонов, то есть:

где Wд - масса рабочего тела в дополнительном баллоне, Vд - объем дополнительного баллона.

Так как оценить массу оставшегося ксенона из-за нахождения его в двухфазном состоянии (в этом случае формула 1 не применима) не представляется возможным, герметизируют дополнительный баллон 6 и производят нагрев дополнительного баллона до температуры на 10…20 K выше критической температуры рабочего тела, при которой рабочее тело гарантированно станет газообразным. Например, в случае использования ксенона, необходимо нагреть дополнительный баллон 6 до температуры 300…320 K. Затем измеряют давление Рд и температуру Тд рабочего тела в дополнительном баллоне 6.

Тогда масса газообразного рабочего тела в дополнительном баллоне 6 равна: Wдд М Уд / Z R Тд.

Используя также формулы (1) и (2), легко получить соотношение для определения массы газообразного при нормальных условиях рабочего тела, оставшегося в данный момент в баллоне ЭРДУ 1:

Таким образом, предложенным способом в предложенном устройстве может быть измерена масса рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки КА, в любой момент эксплуатации ЭРДУ как в космосе, так и в наземных условиях. При этом следует отметить, что определение массы рабочего тела в баллоне взвешиванием, например, при его заправке, когда он находится в составе КА практически крайне затруднено.


Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы
Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы
Источник поступления информации: Роспатент

Показаны записи 301-310 из 370.
11.03.2019
№219.016.da87

Устройство для старта полезного груза с планет без атмосферы

Изобретение относится к космической технике, в частности к устройствам доставки полезного груза с Луны на Землю, например для транспортировки с Луны одноатомного газа гелий 3 (Hе), который может быть использован в качестве дополнительного источника термоядерной энергии. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002368543
Дата охранного документа: 27.09.2009
11.03.2019
№219.016.dac1

Система теплозащиты космического аппарата

Изобретение относится к конструкции теплозащиты космического аппарата, выводимого ракетой-носителем в космическое пространство. Система теплозащиты космического аппарата содержит экранно-вакуумную тепловую изоляцию (ЭВТИ). Для ЭВТИ предусмотрено устройство обеспечения ее прочностных и...
Тип: Изобретение
Номер охранного документа: 0002360849
Дата охранного документа: 10.07.2009
11.03.2019
№219.016.db2c

Блок центробежных вентиляторов

Изобретение относится к вентиляторостроению, может быть использовано в составе систем терморегулирования изделий космической техники и обеспечивает уменьшение поперечных габаритов и расширение компоновочных возможностей блока центробежных вентиляторов. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002415306
Дата охранного документа: 27.03.2011
11.03.2019
№219.016.db53

Устройство для фиксации ручного инструмента

Изобретение относится к приспособлениям для фиксации ручного инструмента и касается устройства для фиксации ручного инструмента. Устройство для фиксации ручного инструмента, содержащее закрепленную на основании гребенку с зубцами, выполненными в виде лепестков, зазор между которыми, а также...
Тип: Изобретение
Номер охранного документа: 0002414342
Дата охранного документа: 20.03.2011
11.03.2019
№219.016.db6b

Анод электроракетного двигателя с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Анод электроракетного двигателя с замкнутым дрейфом электронов включает корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с...
Тип: Изобретение
Номер охранного документа: 0002421630
Дата охранного документа: 20.06.2011
11.03.2019
№219.016.dc11

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Изобретение относится к управлению ориентацией космического аппарата (КА) с неподвижными относительно корпуса КА панелями солнечных батарей (СБ). Способ управления включает гравитационную ориентацию КА и его закрутку вокруг продольной оси (минимального момента инерции). При нахождении Солнца...
Тип: Изобретение
Номер охранного документа: 0002457158
Дата охранного документа: 27.07.2012
11.03.2019
№219.016.dc1a

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению ориентацией космического аппарата (КА) и может быть использовано при выполнении экспериментов и исследований на его борту. Способ включает гравитационную ориентацию КА, после которой производят закрутку КА вокруг выставленной на центр Земли оси КА. Закрутку...
Тип: Изобретение
Номер охранного документа: 0002457159
Дата охранного документа: 27.07.2012
11.03.2019
№219.016.dc36

Осевой вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий ракетно-космической техники. Техническим результатом изобретения является повышение технологичности и вибропрочности осевого вентилятора. Указанный технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002450166
Дата охранного документа: 10.05.2012
11.03.2019
№219.016.dd36

Устройство для сообщения вращательного движения

Изобретение относится к области космической техники и может быть использовано, например, для сообщения вращательного движения различным механизмам космических летательных аппаратов. Устройство содержит корпус, планетарный многоступенчатый редуктор с двумя предохранительными муфтами (33, 56), с...
Тип: Изобретение
Номер охранного документа: 0002445530
Дата охранного документа: 20.03.2012
15.03.2019
№219.016.e00f

Способ определения герметичности изолированного объема системы подачи рабочего тела с источником плазмы, преимущественно в условиях вакуума

Изобретение относится к испытательной технике. Сущность: измеряют давление и температуру в изолированном объеме в начальный момент времени, тарированный расход газовой фазы рабочего тела в течение контрольного времени с последующим измерением давления и температуры в изолированном объеме. По...
Тип: Изобретение
Номер охранного документа: 0002272265
Дата охранного документа: 20.03.2006
Показаны записи 291-297 из 297.
11.03.2019
№219.016.db6b

Анод электроракетного двигателя с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Анод электроракетного двигателя с замкнутым дрейфом электронов включает корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с...
Тип: Изобретение
Номер охранного документа: 0002421630
Дата охранного документа: 20.06.2011
09.06.2019
№219.017.7bd5

Электроракетная двигательная установка и способ ее эксплуатации

Изобретение относится к области электроракетных двигателей. В электроракетной двигательной установке, содержащей электроракетный двигатель, включающий разрядную камеру и катод, соединенный трубопроводом с баллоном, содержащим ксенон высокой чистоты, дополнительно установлена снабженная...
Тип: Изобретение
Номер охранного документа: 0002308610
Дата охранного документа: 20.10.2007
13.07.2019
№219.017.b3f9

Двухступенчатый двигатель с анодным слоем (варианты)

Изобретение относится к области электроракетных двигателей (ЭРД). Двухступенчатый двигатель с анодным слоем содержит катод - нейтрализатор, электромагнит, магнитопровод с полюсами, катод ускорительной ступени, который выполнен из графита, жестко связанные с магнитопроводом и расположенные...
Тип: Изобретение
Номер охранного документа: 0002406873
Дата охранного документа: 20.12.2010
20.04.2023
№223.018.4bab

Магнитоплазменный электрореактивный двигатель

Изобретение относится к космической технике, точнее к электрореактивным двигателям, и может быть использовано в космических аппаратах. Магнитоплазменный электрореактивный двигатель содержит корпус, хотя бы по одному кольцевому магниту и радиочастотной антенне, подключенной к генератору...
Тип: Изобретение
Номер охранного документа: 0002764496
Дата охранного документа: 17.01.2022
15.05.2023
№223.018.5ca7

Суборбитальный космический корабль и способ его торможения в атмосфере

Группа изобретений относится к управлению и конструкции космических кораблей (КК) многократного применения с вертикальным взлетом и посадкой, которые могут быть использованы для космического туризма, высотных парашютных прыжков и др. Суборбитальный КК содержит раму, посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002759358
Дата охранного документа: 12.11.2021
15.05.2023
№223.018.5ca8

Суборбитальный космический корабль и способ его торможения в атмосфере

Группа изобретений относится к управлению и конструкции космических кораблей (КК) многократного применения с вертикальным взлетом и посадкой, которые могут быть использованы для космического туризма, высотных парашютных прыжков и др. Суборбитальный КК содержит раму, посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002759358
Дата охранного документа: 12.11.2021
17.06.2023
№223.018.7ed8

Способ создания аккумулятора тепла

Изобретение относится к устройствам для хранения тепла и может быть использовано в автономном солнечном электротеплоснабжении бытовых и производственных помещений, преимущественно лунной базы. Способ создания аккумулятора тепла, преимущественно для лунной базы, состоит в создании полости в...
Тип: Изобретение
Номер охранного документа: 0002774728
Дата охранного документа: 22.06.2022
+ добавить свой РИД