×
26.08.2017
217.015.ddc6

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ СДВИГА ЧАСТОТЫ РАССЕЯНИЯ МАНДЕЛЬШТАМА-БРИЛЛЮЭНА НА ДЛИНЕ ОПТИЧЕСКОГО ВОЛОКНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего лазера разделяют на две части. Первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно. Из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий из испытуемого оптического волокна. На выходе балансного фотоприемника с помощью фильтра выделяют низкочастотную компоненту сигнала, которую подают на вход блока управления и обработки. Изменяют частоту опорного оптического сигнала с шагом менее 100 МГц и повторяют измерения для каждого шага при каждом значении частоты, затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения. Получают распределение сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна. Для формирования опорного оптического сигнала вторую часть непрерывного оптического излучения задающего лазера вводят в опорное оптическое волокно, из сигнала обратного рассеяния, поступающего из опорного оптического волокна с помощью оптического фильтра, выделяют сигнал обратного рассеяния Мандельштама-Бриллюэна, усиливают его, а затем модулируют с одной боковой полосой сигналом радиочастоты, которую изменяют с заданным шагом в диапазоне до нескольких сотен мегагерц. Далее выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, а сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоте модулирующего радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение. Техническим результатом изобретения является расширение области применения. 1 ил.

Изобретение относится к области измерительной техники, предназначено для измерения сдвига частоты рассеяния Мандельштама-Бриллюэна в зависимости от координат по длине оптического волокна и может быть использовано для реализации блиллюэновских оптических рефлектометров, которые имеют широкую область применения в сенсорных системах контроля протяженных объектов, таких как оптические кабели, трубопроводы, мосты, дороги и т.д.

Известны способы [1- 4] измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, в которых искомый сдвиг частоты определяется косвенно по результатам прямых измерений уровней оптической мощности сигнала обратного рассеяния либо из отношения Ландау-Плячека [1], либо из отношения значений оптической мощности сигналов обратного рассеяния Мандельштама-Бриллюэна испытуемого оптического волокна и опорного оптического волокна [2-4]. Основным недостатком данных способов являются низкая чувствительность и большая погрешность измерений, обусловленные низкой точностью измерений малых изменений оптической мощности слабых рассеянных сигналов, что существенно ограничивает область их применения.

Известны способы [5, 6], базирующиеся на выделении обратного рассеяния Мандельштама-Бриллюэна с помощью резонансного усилителя на основе вынужденного рассеяния Мандельштама-Бриллюэна (ВРМБ усилителя). Реализация данных способов требует применения дорогостоящих компонентов. Для работы ВРМБ усилителя необходимо непрерывное излучение лазера с мощностью порядка нескольких десятков или сотен мВТ со спектральной полосой менее 100 МГц. Такие требования ведут к увеличению потребления энергии и удорожанию реализаций указанных способов измерения и тем самым ограничивают их область применения.

Наиболее близким к предлагаемому способу является способ измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна [7], заключающийся в том, что непрерывное оптическое излучение задающего лазера разделяют на две части, первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно, из второй части формируют опорный оптический сигнал одной поляризации, для чего вторую часть непрерывного оптического излучения задающего лазера сначала модулируют сигналом СВЧ, а затем выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, подают опорный оптический сигнал одной поляризации на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий из испытуемого оптического волокна, на выходе балансного фотоприемника с помощью фильтра выделяют низкочастотную компоненту сигнала, которую подают на вход блока управления и обработки, где результаты измерений запоминают, частоту модулирующего сигнала СВЧ изменяют в диапазоне 10-11 ГГц с шагом менее 100 МГц и повторяют измерения для каждого шага при каждом значении частоты модулирующего сигнала СВЧ, после чего изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения, по результатам обработки данных измерений получают распределение сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, определяя сдвиг частоты рассеяния Мандельштама-Бриллюэна как значение частоты модулирующего сигнала СВЧ, при котором сумма сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение.

Сущностью предлагаемого изобретения является расширение области применения.

Эта сущность достигается тем, что согласно способу измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, заключающемуся в том, что непрерывное оптическое излучение задающего лазера разделяют на две части, первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно, из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий из испытуемого оптического волокна, на выходе балансного фотоприемника с помощью фильтра выделяют низкочастотную компоненту сигнала, которую подают на вход блока управления и обработки, где результаты измерений запоминают, изменяют частоту опорного оптического сигнала с шагом менее 100 МГц и повторяют измерения для каждого шага при каждом значении частоты, затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения, после чего по результатам обработки данных измерений получают распределение сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, при этом, чтобы сформировать опорный оптический сигнал, вторую часть непрерывного оптического излучения задающего лазера вводят в опорное оптическое волокно, из сигнала обратного рассеяния, поступающего из опорного оптического волокна с помощью оптического фильтра, выделяют сигнал обратного рассения Мандельштама-Бриллюэна, усиливают его, а затем модулируют с одной боковой полосой сигналом радичастоты, которую изменяют с заданным шагом в диапазоне до нескольких сотен мегагерц, после чего выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, а сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют при обработке данных измерений как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоты модулирующего сигнала радиочастоты, при котором значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение.

На чертеже представлена структурная схема устройства для реализации заявляемого способа.

Устройство содержит задающий узкополосный лазер непрерывного оптического излучения 1, оптический разветвитель 2, генератор импульсов 3, первый электрооптический модулятор 4, первый оптический усилитель 5, первый оптический циркулятор 6, испытуемое оптическое волокно 7, второй оптический циркулятор 8, опорное оптическое волокно 9, оптический фильтр 10, второй оптический усилитель 11, генератор радиочастот 12, второй электрооптический модулятор 13, переключаемый поляризатор 14, балансный фотоприемник 15, фильтр нижних частот 16, блок управления и обработки 17.

Выход задающего узкополосного лазера непрерывного оптического излучения 1 соединен со входом оптического разветвителя 2, первый выход которого подключен к оптическому входу первого электрооптического модулятора 4, а второй - к первому входу второго оптического циркулятора 8. Электрический вход первого электрооптического модулятора 4 соединен с выходом генератора импульсов 3, а выход первого электрооптического модулятора 4 подключен ко входу первого оптического усилителя 5, выход которого подключен к первому входу первого оптического циркулятора 5, ко второму входу которого подключено испытуемое оптическое волокно 6. При этом ко второму входу второго оптического циркулятора 8 подключено опорное оптическое волокно 9, а третий вход второго оптического циркулятора 8 соединен со входом оптического фильтра 10, выход которого подключен ко входу второго оптического усилителя 11. Выход второго оптического усилителя 11 подключен к оптическому входу второго электрооптического модулятора 13, электрический вход которого соединен с выходом генератора радиочастот 11, а выход подключен ко входу переключаемого поляризатора 14. Выход переключаемого поляризатора 14 подключен к одному входу балансного фотоприемника 15, к другому входу которого подключен третий вход первого оптического циркулятора 6. Выход балансного фотоприемника 15 соединен со входом фильтра нижних частот 16, выход которого соединен со входом блока управления и обработки 17. При этом первый выход управления блока управления и обработки 17 соединен со входом управления генератора импульсов 3, второй выход управления блока управления и обработки 17 соединен со входом управления генератора радиочастот 12, а третий выход управления блока управления и обработки 17 соединен со входом управления переключаемого поляризатора 14.

Устройство работает следующим образом. Оптический разветвитель 2 разделяет оптическое излучение задающего узкополосного лазера непрерывного оптического излучения 1 на две части. Первая часть оптического излучения задающего узкополосного лазера непрерывного оптического излучения 1 с первого выхода оптического разветвителя 2 поступает на оптический вход первого электрооптического модулятора 4, на электрический вход которого поступает последовательность импульсов от генератора импульсов 3, которая модулирует оптическое излучение. В результате на выходе первого электрооптического модулятора 4 формируется последовательность оптических импульсов, которая усиливается в первом оптическом усилителе 5 и через первый оптический циркулятор 6 поступает в испытуемое оптическое волокно 7. Вторая часть оптического излучения задающего узкополосного лазера непрерывного оптического излучения 1 со второго выхода оптического разветвителя 2 через второй оптический циркулятор 8 поступает в опорное оптическое волокно 9. Поступающий из опорного оптического волокна 9 оптический сигнал обратного рассеяния через второй оптический циркулятор 8 поступает на вход оптического фильтра 10. Оптический фильтр 10, который может быть выполнен, например, на основе интерферометра Маха-Зандера, выделяет из суммарного сигнала обратного рассеяния сигнал обратного рассеяния Мандельштама-Бриллюэна, который с выхода оптического фильтра 10 поступает на вход второго оптического усилителя 11 и после усиления с выхода второго оптического усилителя 11 поступает на оптический вход второго электрооптического модулятора 13. На электрический вход второго электрооптического модулятора 13 поступает сигнал от генератора радиочастот 12, который модулирует оптический сигнал с одной боковой полосой, из которого затем с помощью переключаемого поляризатора 14 выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором 14 ортогональных состояний поляризации. Эта компонента - опорный оптический сигнал одной поляризации. Этот опорный оптический сигнал одной поляризации поступает на один вход балансного фотоприемника 15, на другой вход которого через первый оптический циркулятор 6 поступает сигнал обратного рассеяния из испытуемого оптического волокна 7. Фильтр нижних частот 16 выделяет низкочастотный сигнал биений с выхода балансного фотоприемника 15.

Из испытуемого оптического волокна 7 на балансный фотоприемник 15 поступает сигнал обратного рассеяния из испытуемого оптического волокна, который включает релеевскую компоненту с частотой ω0 оптической несущей задающего узкополосного лазера непрерывного оптического излучения 1 и стоксову и антистоксову компоненты с чатотой ω0±ΔωВ, где ΔωВ - сдвиг частоты рассеяния Мандельштама-Бриллюэна. Собственно сдвиг частоты рассеяния Мандельштама-Бриллюэна можно рассматривать как сумму ΔωВ=ΔωВ0+ΔωВР, где сдвиг ΔωB0 - сдвиг частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий, а сдвиг частоты ΔωВР - изменения, обусловленные собственно температурными и механическими воздействиями. Отсюда частота стоксовой и антистоксовой компонент в испытуемом оптическом волокне 7 ω0±(ΔωВ0+ΔωBP). Частота опорного оптического сигнала равна ω0-ΔωВ0-ΔωRF, где сдвиг частоты ΔωRF равен модулирующей частоте генератора радиочастот 12. Соответственно при условии приближенного равенства ΔωВР≈ΔωRF на выходе фильтра нижних частот 16 имеют место низкочастотные биения. По наличию сигнала биений поступающего на вход блока управления и обработки 17 определяется сдвиг частоты рассеяния Мандельштама-Бриллюэна как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоты модулирующего сигнала радиочастоты, при котором значение суммы амплитуд сигналов биений на входе блока управления и обработки 17, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение.

Частота модулирующего сигнала генератора радиочастот 12 изменяется с шагом менее 100 МГц в диапазоне до нескольких сотен мегагерц. Результаты измерений сигналов, поступающих на вход блока управления и обработки 17, запоминают на каждом шаге измерений для каждого значения частоты. Как и в прототипе, для устранения недостатков гетеродинного приема измерения выполняются для двух ортогональных состояний поляризации опорного оптического сигнала. Для этого переключаемый поляризатор 13 в зависимости от сигнала управления от блока управления и обработки 17 выделяет в процессе измерений по очереди компоненты с одним из двух ортогональных состояний поляризации. Результаты измерений для каждой из двух компонент запоминают.

Управление генератором импульсов 3, генератором радиочастот 11 и поляризатором от блока управления и обработки 16 обеспечивает синхронизацию работы устройства. Сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют по результатам обработки данных измерений при изменении частоты генератора радиочастот 12 и состояния поляризации опорного оптического сигнала одной поляризации как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоты модулирующего сигнала радиочастоты, при котором значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного оптического сигнала одной поляризации, превышает заданное пороговое значение. Возможность реализации данного устройства определяется возможностью реализации его основных компонентов.

В отличие от известного способа, которым является прототип, предлагаемый способ измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна позволяет значительно уменьшить шаг изменения частоты опорного оптического сигнала одной поляризации и тем самым увеличить разрешающую способность. Кроме того, предлагаемый способ в отличие от прототипа исключает потребность в использовании дорогостоящей техники СВЧ и, соответственно, облегчает решение проблем электромагнитной совместимости, что позволяет существенно снизить затраты на его реализацию по сравнению с прототипом. В итоге перечисленные выше преимущества расширяют область применения заявляемого способа по сравнению с прототипом.

Источники информации

1. Wait Р.С., Newson T.P. Landau Placzek ratio applied to distributed fibre sensing// Optics Communications, v. 122, 4-6, 1996, p.p. 141-146.

2. Патент RU 127926.

3. Патент RU 139203.

4. Патент RU 141314.

5. Патент RU 2444001.

6. Патент RU 2229693.

7. Muping Song, Bin Zhao, Xianmin Zhang. Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception// Chinese Optics Letters, v. 3, No. 5, 2005. - p.p. 271-274.

Способ измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, заключающийся в том, что непрерывное оптическое излучение задающего лазера разделяют на две части, первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно, из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий из испытуемого оптического волокна, на выходе балансного фотоприемника с помощью фильтра выделяют низкочастотную компоненту сигнала, которую подают на вход блока управления и обработки, где результаты измерений запоминают, изменяют частоту опорного оптического сигнала с шагом менее 100 МГц и повторяют измерения для каждого шага при каждом значении частоты, затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения, после чего по результатам обработки данных измерений получают распределение сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна, отличающийся тем, что, чтобы сформировать опорный оптический сигнал, вторую часть непрерывного оптического излучения задающего лазера вводят в опорное оптическое волокно, из сигнала обратного рассеяния, поступающего из опорного оптического волокна с помощью оптического фильтра, выделяют сигнал обратного рассеяния Мандельштама-Бриллюэна, усиливают его, а затем модулируют с одной боковой полосой сигналом радичастоты, которую изменяют с заданным шагом в диапазоне до нескольких сотен мегагерц, после чего выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, а сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют при обработке данных измерений как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоты модулирующего сигнала радиочастоты, при котором значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение.
СПОСОБ ИЗМЕРЕНИЯ СДВИГА ЧАСТОТЫ РАССЕЯНИЯ МАНДЕЛЬШТАМА-БРИЛЛЮЭНА НА ДЛИНЕ ОПТИЧЕСКОГО ВОЛОКНА
СПОСОБ ИЗМЕРЕНИЯ СДВИГА ЧАСТОТЫ РАССЕЯНИЯ МАНДЕЛЬШТАМА-БРИЛЛЮЭНА НА ДЛИНЕ ОПТИЧЕСКОГО ВОЛОКНА
Источник поступления информации: Роспатент

Показаны записи 51-57 из 57.
14.12.2018
№218.016.a75f

Способ обнаружения акустооптоволоконного канала утечки речевой информации через оптические волокна кабельных линий и защиты от утечки речевой информации через оптические волокна

Изобретение относится к технике связи и может быть использовано для обеспечения информационной безопасности переговоров в выделенных помещениях от угроз утечки акустической (речевой) информации через волоконно-оптические коммуникации. Технический результат состоит в повышении защиты...
Тип: Изобретение
Номер охранного документа: 0002674751
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7fd

Способ защиты от утечки речевой информации через обратнорассеянное оптическое излучение в оптических волокнах кабельных линий

Изобретение относится к области обеспечения информационной безопасности переговоров в выделенных помещениях путем нейтрализации каналов утечки речевой информации через волоконно-оптические линии и может быть использовано в системах защиты конфиденциальной речевой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002674988
Дата охранного документа: 14.12.2018
19.04.2019
№219.017.1d46

Способ измерения избыточной длины оптического волокна в модуле оптического кабеля

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в модуле оптического кабеля. В способе измерения избыточной длины оптического волокна в модуле оптического кабеля измеряют и запоминают поляризационную характеристику...
Тип: Изобретение
Номер охранного документа: 0002685066
Дата охранного документа: 16.04.2019
17.10.2019
№219.017.d6ae

Способ модового мультиплексирования волоконно-оптической линии передачи

Изобретение относится к технике связи и может быть использовано для модового мультиплексирования и увеличения пропускной способности волоконно-оптических линий передачи сетей связи. Технический результат состоит в расширении области применения. Для этого в модовом мультиплексоре на первом этапе...
Тип: Изобретение
Номер охранного документа: 0002702985
Дата охранного документа: 14.10.2019
24.10.2019
№219.017.d92a

Способ пространственно-временной защиты информации

Изобретение относится к области телекоммуникаций. Технический результат заключается в расширении арсенала средств. Способ пространственно-временной защиты информации, заключается в том, что сообщение разбивают на n блоков, число которых выбирают по ключу, сообщение шифруют блочным шифром с...
Тип: Изобретение
Номер охранного документа: 0002703972
Дата охранного документа: 22.10.2019
15.11.2019
№219.017.e295

Способ контроля антенно-мачтовых сооружений

Изобретение относится к области контроля состояния несущих конструкций антенно-мачтовых сооружений (АМС), оперативного оповещения об изменениях их состояния, предупреждения чрезвычайных ситуаций и может быть использовано в автоматизированных системах мониторинга состояния антенно-мачтовых...
Тип: Изобретение
Номер охранного документа: 0002705934
Дата охранного документа: 12.11.2019
23.05.2020
№220.018.2068

Способ прокладки бортовых волоконно-оптических кабелей

Изобретение относится к волоконно-оптической технике и может быть использовано для построения бортовых сетей автомобилей, воздушных судов, судов водного транспорта, космических летательных аппаратов и других движимых объектов различного назначения. Согласно способу прокладки бортового...
Тип: Изобретение
Номер охранного документа: 0002721621
Дата охранного документа: 21.05.2020
Показаны записи 61-62 из 62.
24.07.2020
№220.018.3619

Способ крепления оптических модулей оптического кабеля на кассете муфты при сращивании длин оптического кабеля

Использование: для крепления оптических модулей оптического кабеля на кассете муфты при сращивании длин оптического кабеля. Сущность заявленного изобретения заключается в том, что в способе крепления оптических модулей оптического кабеля на кассете муфты при сращивании длин оптического кабеля...
Тип: Изобретение
Номер охранного документа: 0002727562
Дата охранного документа: 22.07.2020
14.05.2023
№223.018.55a4

Способ одновременного измерения частоты, фазы, начальной фазы и амплитуды гармонического сигнала

Способ относится к измерительной технике и может быть использован для одновременного измерения частоты, фазы, начальной фазы и амплитуды непрерывного гармонического сигнала по набору исходных данных, заданных большим набором дискретных отсчетов. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002738602
Дата охранного документа: 14.12.2020
+ добавить свой РИД