×
26.08.2017
217.015.dd5c

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Аннотация: Предложенное изобретение относится к устройствам для определения концентрации соединений в твердой фазе. Устройство для определения концентрации манганитов редкоземельных элементов (МРЭ) состоит из источника света - ртутной лампы, блока питания источника света, фотоприемника излучения видимой области спектра, блока питания фотоприемника, микровольтметра для измерения тока фотоприемника. Устройство также включает набор светофильтров, обеспечивающий пропускание на исследуемый образец только линии излучения ртутных ламп с длиной волны 546 нм. По величине коэффициента отражения на длине волны 546 нм и предварительно полученной зависимости коэффициента отражения от концентрации манганитов редкоземельных элементов определяется концентрация конкретного исследуемого МРЭ. Технический результат изобретения заключается в возможности осуществления измерения концентрации манганитов редкоземельных металлов. 3 ил.

Для определения концентрации соединений в твердой фазе существует несколько способов, основанных на различных физических процессах. Наиболее распространенным является рентгенофазовый анализ (РФА), осуществляемый с помощью рентгеновских дифрактометров. При таком способе концентрацию соединений, находящихся в исследуемом материале определяют по интенсивности рентгеновских лучей, отраженных от различных узлов кристаллических решеток этого материала в целом или его составляющих [1].

Другим способом прямого определения концентрации соединений в твердой фазе является вторичная ионная масс-спектрометрия (ВИМС). При таком способе концентрацию соединений, находящихся в исследуемом материале определяют по интенсивности пиков в масс-спектрах, соответствующих элементам, входящим в эти соединения. Исследуемый материал в установках ВИМС распыляют в вакууме пучком ионов (чаще всего ионов инертных газов) и с помощью масс-спектрометра анализируют типы и концентрацию распыленных атомов, молекул или конгломератов [2].

Следующим способом прямого определения концентрации соединений в твердой фазе является Оже электронная спектроскопия, основанная на эффекте, открытом в 1925 году французским ученым Оже. Эффект заключается в испускании электронов (помимо квантов) при переходах электронов с высоких электронных оболочек на более низкие в атоме. Поскольку каждому химическому элементу свойственна своя система электронных оболочек, то по распределению регистрируемых электронов по энергии с помощью энергоанализаторов, и по концентрации электронов, регистрируемых с помощью микроамперметров, определяют типы и концентрацию элементов в анализируемом материале [3].

Известен и широко применяется спектрофотометрический способ определения концентрации соединений в твердой фазе. Он заключается в помещении в жидкость данного соединения, измерении спектров пропускания как самой жидкости, так и раствора с этим соединением. По полученным значениям коэффициента пропускания на определенных длинах волн рассчитывается оптическая плотность, строится графическая зависимость оптической плотности от концентрации соединения. Затем по этой зависимости для конкретного вещества определяется значение концентрации по результатам измерения оптической плотности [4].

Для осуществления данного способа требуется спектрофотометр, включающий монохроматор, дифракционные решетки, источник света и фотоприемник на необходимый диапазон спектра, блоки питания источника света и фотоприемника, микроамперметр для измерений тока фотоприемника. Самым дорогостоящим элементом спектрофотометра является монохроматор.

Если синтезированное или природное соединение содержит несколько составляющих - смесь компонентов, то для определения концентрации каждой составляющей данным способом градуировку необходимо проводить по каждой составляющей на определенном спектральном участке или при определенной длине волны излучения. Затем, сопоставляя градуировки для каждой составляющей, определить их концентрацию. Данный способ выбран в качестве прототипа.

Спектры отражения манганитов редкоземельных элементов такие, что в области 500-600 нм регистрируется минимум коэффициента отражения (Фиг. 1), обусловленный полосой поглощения электронов (переходами Mn4+→Mn3+) при образовании твердых растворов типа LaMnO3, LaSrMnO3, LaCaMnO3 [5, 6]. Величина провала - значение коэффициента отражения является характеристикой концентрации соединений МРЭ. Поэтому, регистрируя значение коэффициента отражения в этой области, можно определить по градуировочной зависимости концентрацию МРЭ.

В предлагаемом способе определения концентрации манганитов редкоземельных элементов (МРЭ), так же, как и в прототипе, используется источник света и фотоприемник на необходимый диапазон спектра, блоки питания источника света и фотоприемника, микровольтметр для измерений тока фотоприемника. В отличие от прототипа, вместо дорогостоящего монохроматора с дифракционными решетками, предназначенными для выделения излучения определенной длины волны с целью записи спектра, используется ртутная лампа с линейчатым спектром излучения и набор из трех стеклянных светофильтров, позволяющих вырезать (убрать) все линии излучения, кроме линии 546 нм. В таком наборе могут быть светофильтры ОС-11, ПС-7 и СЗС-21.

Целью изобретения является устройство, содержащее все перечисленные элементы схемы за исключением монохроматора. Схема устройства показана на Фиг. 2, работа которого заключается в том, что на ртутную лампу РЛ из блока питания БП-1 подается напряжение, излученный лампой свет в виде отдельных линий попадает на набор светофильтров СФ, состоящий из светофильтров ОС-11, ПС-7 и СЗС-21, в котором вырезаются все линии излучения, кроме линии 546 нм. Это излучение через фокусирующую линзу Л1 попадает на исследуемый образец О. Отраженный от образца пучок направляется на фокусирующую линзу Л2 и далее на фотоприемник в видимой области спектра типа ФЭУ-74, или ФЭУ-118, или ФЭУ-176, питание которого осуществляется с блока БП-2. Зарегистрированный микровольтметром MkV ток ФЭУ в виде падения напряжения на калибровочном сопротивлении пропорционален интенсивности пучка света с длиной волны 546 нм и коэффициенту отражения исследуемого образца МРЭ. По величине коэффициента отражения с использованием градуировочной зависимости определяется концентрация РЗЭ в исследуемом образце.

Для получения зависимости концентрации соединений МРЭ от коэффициента отражения на длине волны 546 нм проводили экспериментальные исследования. Для этого в различных режимах синтеза (температура и время прогрева, концентрация ионов стронция) получали различную концентрацию редкоземельного элемента LaSrMnO3. Концентрацию LaSrMnO3 определяли методом РФА на рентгеновском дифрактометре Shimadzu XRD 6000, коэффициент отражения на длине волны 546 нм спектрофотометром Perkin Elmer Lambda 950. Строили зависимость коэффициента отражения на длине волны 546 нм от концентрации соединения LaSrMnO3, которая оказалась линейной (Фиг. 3). По этой зависимости, измеряя величину коэффициента отражения на длине волны 546, можно определить концентрацию МРЭ в различных порошках, керамиках или природных минералах.

Источники информации

1. Физические методы исследования неорганических веществ / Под ред. А.Б. Никольского. М.: Академия, 2006, 444 с.

2. Михайлов M.М. Радиационное и космическое материаловедение. Издательство Томского университета, Томск, 2008, 440 с.

3. З. Марченко, М. Бальцежак. Методы спектрофотометрии в УФ и видимой областях в неорганическом анализе. Пер. с пол. А.В. Гармаша. Издательство: Бином Лаборатория знаний, 2009, 711 с.

4. Карлсон Т. Фотоэлектронная и оже-спектроскопия, пер. с англ., Л., 1981; Электронная и ионная спектроскопия твердых тел. / пер. с англ., под ред. В.И. Раховского, М., 1981. 435 с.

5. G. Tang, Y. Yu, Y. Cao and W. Chen, The thermochromic properties of Lal-xSrxMnO3 compounds, Solar Energy Materials & Solar Cells, vol. 92, pp. 1298-1301, 2008.

6. K. Takenaka, K. Iida, Y. Sawaki, S. Sugai, Y. Moritomo and A. Nakamura, Optical Reflectivity Spectra Measured on Cleaved Surfaces of Lal-xSrxMnO3: Evidence against Extremely Small Drude Weight, Journal of the Physical Society of Japan, vol. 68, pp. 1828-1831, 1999.

Устройство для определения спектрофотометрическим методом концентрации манганитов редкоземельных элементов, включающее источник света - ртутную лампу, блок питания источника света, фотоприемник на видимую область спектра типа ФЭУ-74, или ФЭУ-118, или ФЭУ-176, блок питания фотоприемника, микровольтметр для измерения тока фотоприемника, отличающееся тем, что используется набор светофильтров типа ОС-11, ПС-7 и СЗС-21, обеспечивающий пропускание на исследуемый образец только линии излучения ртутных ламп с длиной волны 546 нм, необходимого для измерения коэффициента отражения, который пропорционален концентрации манганитов редкоземельных элементов.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ
Источник поступления информации: Роспатент

Показаны записи 61-64 из 64.
13.02.2018
№218.016.23ae

Нулевой радиометр

Изобретение относится к микроволновой радиометрии и может использоваться для измерения электромагнитных сигналов собственного теплового излучения материальных сред в системах дистанционного зондирования Земли, различных природных объектов, промышленности. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002642475
Дата охранного документа: 25.01.2018
10.05.2018
№218.016.3ad9

Способ формирования диаграммы направленности приемной линейной антенной решетки

Изобретение относится к антенной технике. Способ включает вычисление сигнала F по формуле: . Дополнительно вычисляют два сигнала F и F по формулам: , и определяют параметр а: . Выходной сигнал V приемной антенной решетки формируют в зависимости от параметра а, в соответствии с выражением:...
Тип: Изобретение
Номер охранного документа: 0002647518
Дата охранного документа: 16.03.2018
05.10.2018
№218.016.8f79

Способ получения состава композиционного полимерного материала с заданными свойствами

Изобретение относится к способу получения состава композиционного полимерного материала - степени наполнения и среднего радиуса частиц наполнителя с эффективными теплофизическими и электрофизическими характеристиками в заданных интервалах. Способ характеризуется тем, что по...
Тип: Изобретение
Номер охранного документа: 0002668915
Дата охранного документа: 04.10.2018
14.05.2020
№220.018.1cb7

Система дистанционного взаимодействия между лечащим врачом и пользователем

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении эффективности системы. Система содержит: модуль обращения пользователем, соединенный с модулем коммуникации, модуль электронной медицинской карты пользователя, соединенный с модулем обработки...
Тип: Изобретение
Номер охранного документа: 0002720733
Дата охранного документа: 13.05.2020
Показаны записи 61-70 из 71.
13.02.2018
№218.016.23ae

Нулевой радиометр

Изобретение относится к микроволновой радиометрии и может использоваться для измерения электромагнитных сигналов собственного теплового излучения материальных сред в системах дистанционного зондирования Земли, различных природных объектов, промышленности. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002642475
Дата охранного документа: 25.01.2018
09.06.2018
№218.016.5e8a

Термостабилизирующее радиационностойкое покрытие batizro

Изобретение относится к получению терморегулирующих покрытий и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов. Терморегулирующее покрытие класса «солнечные...
Тип: Изобретение
Номер охранного документа: 0002656660
Дата охранного документа: 06.06.2018
16.01.2019
№219.016.b050

Пигмент на основе порошка baso, модифицированного наночастицами sio

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой отраслях промышленности для термостатирования устройств или технологических объектов. Пигмент для терморегулирующих покрытий класса «солнечные оптические отражатели»...
Тип: Изобретение
Номер охранного документа: 0002677173
Дата охранного документа: 15.01.2019
26.01.2019
№219.016.b45b

Пигмент для терморегулирующих покрытий космических аппаратов на основе порошка baso, модифицированного наночастицами zro

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов. Пигмент для терморегулирующих покрытий класса «солнечные оптические отражатели» приготовлен из...
Тип: Изобретение
Номер охранного документа: 0002678272
Дата охранного документа: 24.01.2019
30.03.2019
№219.016.f9ff

Беспилотный летательный аппарат с тремя узлами крепления

Изобретение относится к области ракетной техники и, в частности, к области устройств беспилотных летательных аппаратов - БПЛА, крепящихся на носителях различного типа, в том числе к семейству управляемых БПЛА, крепящихся к пусковым установкам нестационарных носителей с помощью трех узлов...
Тип: Изобретение
Номер охранного документа: 0002683350
Дата охранного документа: 29.03.2019
24.05.2019
№219.017.5f77

Способ отборочных испытаний на радиационную стойкость пигментов baso4

Изобретение относится к пигментам для терморегулирующих покрытий класса «солнечные оптические отражатели». Описывается способ отборочных испытаний на радиационную стойкость пигментов - порошков сульфата бария для терморегулирующих покрытий класса «солнечные оптические отражатели». Способ...
Тип: Изобретение
Номер охранного документа: 0002688766
Дата охранного документа: 22.05.2019
14.06.2019
№219.017.8309

Пигмент для терморегулирующих покрытий космических аппаратов

Изобретение относится к терморегулирующим покрытиям, в том числе к терморегулирующим покрытиям космических аппаратов, и может быть использовано в космической технике, а также в строительной индустрии и в широких отраслях промышленности для термостатирования устройств или технологических...
Тип: Изобретение
Номер охранного документа: 0002691328
Дата охранного документа: 11.06.2019
02.10.2019
№219.017.cf84

Способ получения пигмента для термостабилизирующих покрытий

Изобретение относится к светоотражающим пигментам для применения в составе покрытий класса «солнечные отражатели», которые могут быть использованы для пассивной тепловой защиты космических аппаратов. Пигмент получают путем синтеза в автоклаве при температуре 220°С, давлении 22-23 атм в течение...
Тип: Изобретение
Номер охранного документа: 0002700607
Дата охранного документа: 18.09.2019
12.10.2019
№219.017.d54d

Солнечный отражатель на основе порошка baso, модифицированного наночастицами alo

Изобретение может быть использовано в космической технике, в оптическом приборостроении, в строительной индустрии. Пигмент для покрытий класса «солнечные оптические отражатели» приготовлен из порошка сульфата бария, который модифицирован наночастицами оксида алюминия в количестве 5 мас.%....
Тип: Изобретение
Номер охранного документа: 0002702688
Дата охранного документа: 09.10.2019
13.03.2020
№220.018.0b75

Пигмент для терморегулирующих покрытий космических аппаратов на основе порошка baso, модифицированного наночастицами sio

Изобретение относится к терморегулирующим покрытиям и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности. Пигмент для терморегулирующих покрытий содержит порошок сульфата бария BaSО, модифициранный наночастицами диоксида...
Тип: Изобретение
Номер охранного документа: 0002716436
Дата охранного документа: 11.03.2020
+ добавить свой РИД