×
26.08.2017
217.015.dc7b

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится метрологии, в частности к технике измерения тепловых параметров светодиодов. Через светодиод пропускают последовательность импульсов греющего тока I, широтно-импульсно модулированную по гармоническому закону, с частотой модуляции Ω и глубиной модуляции ; во время действия импульсов греющего тока измеряют напряжение на светодиоде и центральную длину волны излучения светодиода с известным температурным коэффициентом Κ, по результатам измерения определяют амплитуду первой гармоники греющей мощности Р(Ω), потребляемой светодиодом, и амплитуду первой гармоники центральной длины волны излучения светодиода , а также сдвиг фазы между ними ϕ(Ω) на частоте модуляции греющей мощности, измеряют среднюю за период модуляции мощность оптического излучения светодиода, и модуль теплового импеданса находят по формуле а фазу ϕ(Ω) теплового импеданса светодиода определяют как разность фаз между первой гармоникой центральной длины волны излучения светодиода и первой гармоникой греющей мощности. Технический результат - повышение точности измерения теплового импеданса. 2 ил.

Изобретение относится к технике измерения тепловых параметров полупроводниковых изделий и может быть использовано на выходном и входном контроле качества изготовления светодиодов.

Известен способ измерения теплового сопротивления полупроводниковых диодов, заключающийся в том, что на контролируемый диод подают импульсы греющей мощности фиксированной длительности и амплитуды, а в промежутках между импульсами измеряют изменение температурочувствительного параметра (ТЧП), например, прямого напряжения UТЧП диода при пропускании через него малого измерительного тока (ГОСТ 19656, 18-84. Диоды полупроводниковые СВЧ. Методы измерения теплового сопротивления переход-корпус и импульсного теплового сопротивления).

Недостатком способа является низкая точность, обусловленная большой погрешностью измерения импульсного напряжения UТЧП(t) из-за влияния переходных тепловых и электрических процессов при переключении полупроводникового диода из режима разогрева в режим измерения (Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. - М: Сов. радио, 1980. - С. 51).

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ измерения теплового импеданса светоизлучающих диодов (Пат. RU 2556315 РФ МПК G01R 31/00. Способ измерения теплового импеданса светодиодов / Сергеев В.А., Смирнов В.И. - Заявка 2013101864/28, заявл. 15.01.2013, опубл. 10.07.2015, бюл. №19), состоящий в том, что через светодиод пропускают последовательность импульсов греющего тока Iгр, широтно-импульсно модулированную по гармоническому закону с глубиной модуляции а; в промежутках между импульсами греющего тока через светодиод пропускают малый постоянный начальный ток, по результатам измерения напряжения на диоде во время действия импульсов греющего тока и в промежутках между ними определяют амплитуду первой гармоники мощности Pm1(Ω), потребляемой светодиодом, и амплитуду первой гармоники температурочувствительного параметра с известным отрицательным температурным коэффициентом KTU - прямого напряжения на светодиоде при протекании через него малого постоянного начального тока, и сдвиг фазы между ними ϕ(Ω) на частоте модуляции греющей мощности, дополнительно измеряют среднюю мощностьоптического излучения светодиода и модуль теплового импеданса находят по формуле

а фаза ϕΤ(Ω) теплового импеданса светодиода будет равна сдвинутой на 180° разности фаз между первой гармоникой температурочувствительного параметра и первой гармоникой мощности.

Недостатком известного способа является большая погрешность измерения ТЧП из-за переходных процессов при переключении светодиодов из режима нагрева рабочим током в режим измерения. По этой причине верхняя частота частотного диапазона измерения теплового импеданса СИД известным способом ограничена длительностью этих переходных процессов и не превышает 1 кГц.

Технический результат - повышение точности измерения теплового импеданса и повышение верхней частоты диапазона измерения

Технический результат достигается тем, что через светодиод пропускают последовательность импульсов греющего тока Iгр, широтно-импульсно модулированную по гармоническому закону с частотой модуляции Ω и глубиной модуляции а; во время действия импульсов греющего тока измеряют напряжение на светодиоде и центральную длину волны излучения светодиода с известным температурным коэффициентом K, по результатам измерения определяют амплитуду первой гармоники мощности Рm1(Ω), потребляемой светодиодом, и амплитуду первой гармоники центральной длины волны излучения светодиода, а также сдвиг фазы между ними ϕ(Ω) на частоте модуляции греющей мощности, измеряют среднюю за период модуляции мощностьоптического излучения светодиода и модуль теплового импеданса находят по формуле

а фазу ϕT (Ω) теплового импеданса светодиода определяют как разность фаз между первой гармоникой центральной длины волны излучения светодиода и первой гармоникой мощности.

Повышение точности измерения модуля теплового импеданса светодиода достигается за счет того, что в качестве ТЧП используется центральная длина волны излучения светодиода, которая, как известно (Шуберт, Ф. Светодиоды / Ф. Шуберт; пер. с англ. под ред. А.Э. Юновича. - М.: ФИЗМАТЛИТ, 2008. - 496 с.) линейно возрастает с увеличением температуры с постоянным температурным коэффициентом. Температурный коэффициент K обусловлен фундаментальными свойствами полупроводникового материала гетероструктуры и слабо зависит от параметров режима работы светодиода. При этом на изменение этого параметра переходные электрические процессы никакого влияния не оказывают. ШИМ модуляция тока через светодиод по гармоническому закону с заданной глубиной модуляции обеспечивает изменение мощности, потребляемой светодиодом, по закону, близкому к гармоническому, где - постоянная составляющая (среднее значение) греющей мощности, Uд - напряжение на диоде при протекании через него греющего тока заданной амплитуды, Рm1=Im1Uд - первая гармоника греющей мощности, Im1=аIгр - первая гармоника греющего тока. Через некоторое время, превышающее три постоянных времени переход-корпус светодиода, в светодиоде установится регулярный режим и температура р-n-перехода светодиода будет пульсировать относительно некоторого квазистационарного значения, где - установившееся среднее значение температуры перехода, - переменная составляющая температуры перехода светодиода, изменяющаяся по закону, близкому к гармоническому: , ϕT - сдвиг фаз между изменением греющей мощности и изменением температуры. Центральная длина волны излучения будет «отслеживать» измерение температуры именно активной области (гетероперехода) светодиода и будет изменяться также по закону, близкому к гармоническому: , где - центральная длина излучения при средней температуре перехода; , - первая гармоника переменной составляющей изменения центральной длины волны излучения.

Современные средства измерения центральной длины излучения узкополосных оптических сигналов имеют быстродействие порядка 3-5 мкс (см., например, Ульянов, А.В. Методы и средства оперативного контроля параметров спектра узкополосного оптического излучения /А.В. Ульянов, В.А. Сергеев, Рогов В.Н. // Автоматизация процессов управления. - 2015. - №4. - С. 75-80). При этом случайная погрешность, обусловленная шумами фотоприемников, уменьшается в результате фильтрации полезного сигнала при определении первой гармоники. Следует отметить также, что измерение центральной длины производится в те же моменты времени, в которые производится измерение напряжения на светодиоде, что позволяет упростить реализацию способа в конкретных устройствах.

Предлагаемый способ может быть реализован с помощью устройства, структурная схема которого показана на фиг. 1. Эпюры напряжений и сигналов, поясняющие сущность способа и алгоритм работы устройства, приведены на фиг. 2.

Устройство содержит контакты 1 для подключения контролируемого светодиода, генератор греющих импульсов тока 2, устройство управления 3, управляемый аналого-цифровой преобразователь (АЦП) 4, делитель светового потока 5, управляемый измеритель 6 центральной длины волны излучения с цифровым выходом, измеритель оптической мощности 7 с цифровым выходом и вычислитель 8 с индикатором.

Устройство работает следующим образом. После установки светодиода в контактную колодку 1 напротив входного отверстия делителя светового потока 5, после подачи команды «Запуск» на устройство управления 3 по сигналам этого устройства генератор импульсов 2 начинает вырабатывать последовательность греющих импульсов тока заданной амплитуды Im и постоянной частоты ƒсл, которые подаются в контролируемый светодиод. Моменты времени tk=kТсл начала k-го импульса и его длительность τuku0(1+asinΩtk) определяются управляющими импульсами UУ1 (фиг. 2, а) и UУ2 (фиг. 2, б) устройства управления; в результате светодиод будет разогреваться последовательностью импульсов греющего тока Iгр, широтно-импульсно модулированной по гармоническому закону с частотой модуляции Ω и глубиной модуляции а (фиг. 2, в). Через некоторое время, превышающее три постоянных времени переход-корпус светодиода, в светодиоде установится регулярный режим и температура р-n-перехода светодиода будет пульсировать относительно некоторого квазистационарного значения (фиг. 2, г), изменяющегося по гармоническому закону. Напряжение на светодиоде во время протекания импульсов тока (фиг. 2, д) по сигналам UУ3 устройства управления 3 в моменты времени, где Δtот1 некоторое фиксированное время задержки (фиг. 2, е), управляемым АЦП 6 преобразуется в цифровой код. Цифровые отсчеты напряжения светодиода Uд(k) передаются в оперативную память вычислителя 8, где формируется массив значений прямого напряжения светодиода {Uд(k)}. В эти же моменты времени измеритель 6 центральной длины волны излучения преобразует в цифровой код ТЧП - центральную длину волны излучения светодиода (фиг. 2, ж). Цифровые отсчеты λ(k) передаются в оперативную память вычислителя 8, где формируется массив значений ТЧП - {λ(k)}. Значениесредней оптической мощности (фиг. 2, з) с выхода измерителя оптической мощности 7 по сигналу устройства управления передается в вычислитель 8 за несколько тактов до окончания измерения.

Вычислитель 8 вычисляет значения импульсной мощности для каждого k-го греющего импульса тока, путем умножения Uд(t) на значение амплитуды греющих импульсов тока Im:Pm(k)=Im⋅Uд(k) и формирует массив значений импульсной мощности {Рт(к)}. По массивам данных {Pm(k)} и {λ(k)} методом дискретного преобразования Фурье вычислитель 8 определяет амплитуду и фазу гармоник греющей мощности (Рm1 и ϕP) и ТЧП (и ϕT) соответственно и далее вычисляет модуль и фазу теплового импеданса полупроводникового диода по формулам:

ϕ=ϕTP. (3б)

Результат вычисления высвечивается на индикаторе.

Для повышения точности преобразование измеряемых величин осуществляют в течение нескольких (3÷5) периодов модуляции греющей мощности и получают N=(3÷5)ТМсл цифровых отсчетов измеряемых величин.


СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 111.
20.07.2014
№216.012.de5d

Перестраиваемый криогенный генератор гетеродина субтерагерцового диапазона на основе распределенного туннельного перехода для интегральных приемных систем

Изобретение относится к сверхпроводниковой электронике и может быть использовано при создании терагерцовых спектрометров, предназначенных для радиоастрономии, исследования атмосферы Земли, медицинской диагностики, а также для систем контроля и обеспечения безопасности. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002522711
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.defb

Способ распознавания и классификации формы объектов в лабиринтных доменных структурах

Изобретение относится к средствам анализа цифровых изображений. Техническим результатом является обеспечение классификации объектов по геометрическим признакам в лабиринтных структурах. В способе определяют количество объектов на изображении структуры, в качестве морфологических признаков...
Тип: Изобретение
Номер охранного документа: 0002522869
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e259

Способ и устройство для измерения переходных тепловых характеристик светоизлучающих диодов

Изобретение относится к области приборостроения и может быть использовано для измерения температуры активной области светоизлучающих диодов. Заявлен cпособ измерения переходных тепловых характеристик светоизлучающих диодов (СИД), при котором инжекционный ток подают в виде последовательности...
Тип: Изобретение
Номер охранного документа: 0002523731
Дата охранного документа: 20.07.2014
20.11.2014
№216.013.08f3

Мультисенсорная акустическая решетка для аналитических приборов "электронный нос" и "электронный язык"

Изобретение относится к аналитическому приборостроению и может быть использовано для физико-химического анализа жидких и газообразных сред. Достигаемый технический результат - повышение избирательности мод колебаний при увеличении числа датчиков возбуждаемых мод. Мультиплексорная акустическая...
Тип: Изобретение
Номер охранного документа: 0002533692
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0b11

Устройство для отверждения изделий из полимерных материалов ультрафиолетовым излучением

Устройство относится к установкам для отверждения полимерных материалов на основе полиэфирных смол ультрафиолетовым излучением и может быть использовано при изготовлении изделий со сложной поверхностью. Устройство для отверждения изделий из полимерных материалов ультрафиолетовым излучением...
Тип: Изобретение
Номер охранного документа: 0002534241
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.17cb

Способ определения напряжения локализации тока в мощных вч и свч биполярных транзисторах

Изобретение относится к технике измерения предельных параметров мощных биполярных транзисторов и может использоваться на входном и выходном контроле их качества. Способ основан на использовании известного эффекта резкого изменения крутизны зависимости напряжения на эмиттерном переходе при...
Тип: Изобретение
Номер охранного документа: 0002537519
Дата охранного документа: 10.01.2015
27.03.2015
№216.013.3526

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый...
Тип: Изобретение
Номер охранного документа: 0002545090
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3636

Рециркуляционный способ измерения времени задержки распространения сигнала цифровых интегральных микросхем

Изобретение относится к измерительной технике и может быть использовано для измерения времени задержки распространения сигнала цифровых интегральных микросхем. Формируют стартовый и стоповый импульсы заданной длительности и с заданной длительностью интервала между ними, превышающей длительность...
Тип: Изобретение
Номер охранного документа: 0002545362
Дата охранного документа: 27.03.2015
20.04.2015
№216.013.4413

Способ измерения последовательного сопротивления базы полупроводникового диода

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева...
Тип: Изобретение
Номер охранного документа: 0002548925
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.453d

Способ измерения изменения температуры объекта относительно заданной температуры

Изобретение относится к области термометрии и может быть использовано для измерения и мониторинга малых изменений температуры. Заявлен способ измерения температуры объекта с помощью чувствительного элемента (ЧЭ), представляющего собой стандартный двухвходовой резонатор на поверхностных...
Тип: Изобретение
Номер охранного документа: 0002549223
Дата охранного документа: 20.04.2015
Показаны записи 21-30 из 74.
10.01.2015
№216.013.17cb

Способ определения напряжения локализации тока в мощных вч и свч биполярных транзисторах

Изобретение относится к технике измерения предельных параметров мощных биполярных транзисторов и может использоваться на входном и выходном контроле их качества. Способ основан на использовании известного эффекта резкого изменения крутизны зависимости напряжения на эмиттерном переходе при...
Тип: Изобретение
Номер охранного документа: 0002537519
Дата охранного документа: 10.01.2015
27.03.2015
№216.013.3526

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый...
Тип: Изобретение
Номер охранного документа: 0002545090
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3636

Рециркуляционный способ измерения времени задержки распространения сигнала цифровых интегральных микросхем

Изобретение относится к измерительной технике и может быть использовано для измерения времени задержки распространения сигнала цифровых интегральных микросхем. Формируют стартовый и стоповый импульсы заданной длительности и с заданной длительностью интервала между ними, превышающей длительность...
Тип: Изобретение
Номер охранного документа: 0002545362
Дата охранного документа: 27.03.2015
20.04.2015
№216.013.4413

Способ измерения последовательного сопротивления базы полупроводникового диода

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева...
Тип: Изобретение
Номер охранного документа: 0002548925
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.453d

Способ измерения изменения температуры объекта относительно заданной температуры

Изобретение относится к области термометрии и может быть использовано для измерения и мониторинга малых изменений температуры. Заявлен способ измерения температуры объекта с помощью чувствительного элемента (ЧЭ), представляющего собой стандартный двухвходовой резонатор на поверхностных...
Тип: Изобретение
Номер охранного документа: 0002549223
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4706

Фотоэлектрический преобразователь с наноструктурными покрытиями

Использование: для преобразования солнечной энергии в электричество. Сущность изобретения заключается в том, что фотоэлектрический преобразователь содержит воронкообразные сквозные отверстия с просветляющим покрытием и толстопленочное покрытие (с обратной стороны), содержащее сферические...
Тип: Изобретение
Номер охранного документа: 0002549686
Дата охранного документа: 27.04.2015
10.06.2015
№216.013.4f9d

Способ обнаружения неоднородностей линейной формы в оптически непрозрачных средах

Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах. Достигаемый технический результат изобретения - определение точной формы линейных неоднородностей и повышение...
Тип: Изобретение
Номер охранного документа: 0002551902
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5116

Способ изготовления оптического волокна с эллиптической сердцевиной

Изобретение относится к волоконной оптике, в частности к технологии изготовления оптических волокон (ОВ) с высоким двулучепреломлением, сохраняющих поляризацию излучения. Химическим осаждением на внутреннюю поверхность кварцевой трубы наносят слои изолирующей и отражательной оболочек и...
Тип: Изобретение
Номер охранного документа: 0002552279
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.60c5

Способ измерения теплового импеданса светодиодов

Изобретение относится к технике измерения теплофизических параметров полупроводниковых изделий и может быть использовано на выходном и входном контроле качества изготовления светодиодов. Способ состоит в том, что через светодиод пропускают последовательность импульсов греющего тока постоянной...
Тип: Изобретение
Номер охранного документа: 0002556315
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6a38

Способ дистанционного обнаружения неоднородностей в оптически непрозрачных средах

Изобретение относится к областям радиолокации и дистанционного зондирования и может быть использовано для обнаружения протяженных неоднородностей в оптически непрозрачных средах. Достигаемый технический результат - уменьшение влияния помех, возникающих из-за интерференции отраженных объектом...
Тип: Изобретение
Номер охранного документа: 0002558745
Дата охранного документа: 10.08.2015
+ добавить свой РИД