×
26.08.2017
217.015.dbfb

Результат интеллектуальной деятельности: МОДУЛЬ СЛЭБ-ЛАЗЕРА С ДИОДНОЙ НАКАЧКОЙ И ЗИГЗАГООБРАЗНЫМ ХОДОМ ЛУЧЕЙ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Модуль слэб-лазера с диодной накачкой и зигзагообразным ходом лучей содержит установленные в корпусе: активный элемент, элементы накачки, расположенные на теплоотводах симметрично с двух сторон активного элемента, систему охлаждения и пластины из оптически прозрачного материала, размещенные с обеих сторон активного элемента, каждый элемент накачки снабжен линзой. Корпус выполнен в виде двух параллелепипедов, двух корпусов соответственно, между которыми расположен активный элемент, между каждым элементом накачки и теплоотводом размещен термоинтерфейс, система охлаждения выполнена в виде единого контура и снабжена входным, выходным каналами, каналами в теплоотводах и диафрагмами, каналы охлаждения активного элемента образованы активным элементом и пластинами из оптически прозрачного материала, а линзы выполнены конформными. Технический результат заключается в обеспечении возможности повышения КПД лазера. 4 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности системам их охлаждения, и может быть использовано при изготовлении лазерной техники повышенной мощности.

Известно устройство твердотельного лазера и способ его герметизации (патент Япония №2003234523, H01S 3/04, 3/042, 2003 г.). Устройство содержит установленные в корпусе активный элемент (АЭ), выполненный в виде слэба (Nd:YAG), со скошенными торцами под углом Брюстера и каналы для его охлаждения. Корпус выполнен составным из полукорпусов в форме параллелепипедов, в каждом из которых установлены окна (пластины), выполненные из кварцевого стекла, для прохождения излучения накачки.

Каналы охлаждения АЭ прямоугольной формы выполнены таким образом, что охлаждающая жидкость (ОЖ) контактирует с поверхностью АЭ с двух сторон симметрично по широкой поверхности. Герметизируют его два уплотнения прямоугольной формы по наибольшей площади наружной поверхности, уложенные в канавку, выполненную в каждом полукорпусе. Герметизация окон (пластин) выполнена при помощи прозрачного или светлого эластичного клея. Клей выполнен на основе эпоксидной смолы, что обеспечивает его термостойкость и водостойкость.

Излучение накачки проходит перпендикулярно через окна к АЭ. На наружных поверхностях большей площади АЭ с двух сторон симметрично нанесено отражающее покрытие. АЭ герметизируется при помощи уплотнений и держателей полукорпусов, стянутых между собой при помощи болтов.

Однако в данной конструкции, в которой решена задача герметизации активного элемента, не решается задача повышения КПД и мощности выходных характеристик излучения.

Наиболее близким аналогом заявляемого изобретения, выбранным в качестве прототипа, является твердотельный лазер, который содержит установленные в корпусе активный элемент (слэб), элементы накачки, расположенные на теплоотводах симметрично с двух сторон АЭ, систему охлаждения, которая содержит каналы в корпусе, соединенные с каналами охлаждения АЭ, и пластины из оптически прозрачного материала, размещенные с обеих сторон АЭ. Каждый элемент накачки снабжен линзой, расположенной на его излучающей части (патент Япония №2003101108, H01S 3/042, 3/06, 3/094, 2003 г.).

Каналы охлаждения выполнены таким образом, что ОЖ контактирует по всему периметру поперечного сечения АЭ. Линзы выполнены рассеивающими, что делает световой поток накачки согласованным по площади накачиваемой поверхности АЭ.

Каналы в корпусе выполнены наклонными для введения ОЖ к первой наружной поверхности на внешней торцевой стороне в направлении опорной оптической оси таким образом, чтобы ОЖ, проходя через наклонный канал, эффективно охлаждала первую внешнюю торцевую сторону при формировании светового пучка. Таким образом, при таком эффективном охлаждении АЭ можно избежать появления эффекта тепловой линзы.

Однако данная конструкция не позволяет эффективно герметизировать каналы охлаждения АЭ по периметру его прямоугольного сечения, а применение элемента накачки с рассеивающей линзой не предусматривает возможности увеличения мощности.

Задача, на решение которой направлено изобретение, - повышение эффективности охлаждения активного элемента и мощности выходных характеристик излучения.

Технический результат, получаемый при использовании предлагаемого технического решения, - оптимизация накачки и системы охлаждения, увеличение КПД лазера.

Сущность первого варианта заключается в том, что в модуле слэб-лазера с диодной накачкой и зигзагообразным ходом лучей, который содержит установленные в корпусе: активный элемент, элементы накачки, расположенные на теплоотводах симметрично с двух сторон активного элемента и параллельно его поверхности, систему охлаждения, содержащую каналы, соединенные с каналами охлаждения активного элемента, и пластины из оптически прозрачного материала, размещенные с обеих сторон активного элемента, причем каждый элемент накачки снабжен линзой, расположенной на его излучающей части, особенность заключается в том, что корпус выполнен в виде двух параллелепипедов, двух корпусов соответственно, между которыми расположен активный элемент, между каждым элементом накачки и теплоотводом размещен термоинтерфейс, каналы, соединенные с каналами охлаждения активного элемента, выполнены прямоугольного сечения и расположены в каждом корпусе, система охлаждения выполнена в виде единого контура и снабжена входным, выходным каналами в первом корпусе, каналами в теплоотводах каждого корпуса и выполненными в каждом корпусе дополнительными и вторыми дополнительными каналами, входной, выходной каналы соединены: каналами первого корпуса с каналами теплоотводов этого корпуса, с дополнительными каналами первого корпуса и с вторыми дополнительными каналами первого корпуса, которые соединяются с аналогичными вторыми дополнительными каналами второго корпуса, соединенными с дополнительными каналами второго корпуса и каналами этого корпуса с каналами в теплоотводах, дополнительные каналы каждого корпуса соединены с каналами прямоугольного сечения каждого корпуса, между входным каналом и дополнительным каналом первого корпуса, а также между вторым дополнительным каналом второго корпуса и дополнительным каналом этого корпуса установлены диафрагмы, каналы охлаждения активного элемента образованы активным элементом и пластинами из оптически прозрачного материала, линзы выполнены конформными, а каждый элемент накачки установлен на отдельной посадочной поверхности, размещенной на теплоотводах, установленных на внешней поверхности каждого корпуса.

Всей совокупностью существенных признаков обеспечивается эффективный режим работы модуля слэб-лазера с диодной накачкой и зигзагообразным ходом лучей. Этого добились следующим образом: установили напротив излучающей части элементов накачки конформную линзу с целью формирования заданного угла расходимости излучения накачки, при этом оптимально разместили каналы охлаждения элементов накачки (в теплоотводах) и активного элемента, использовав термоинтерфейс для эффективной передачи тепла от элементов накачки к рабочей охлаждаемой поверхности теплоотводов, на входе в канал охлаждения активного элемента разместили дросселирующую диафрагму, позволяющую эффективно согласовать охлаждение активного элемента и элементов накачки, а каждый элемент накачки установили на отдельной посадочной поверхности, размещенной на теплоотводах, чтобы обеспечить равномерное распределение термоинтерфейса. Таким образом, обеспечили оптимальное согласование излучения накачки и активного элемента, оптимизировали накачку и систему охлаждения, увеличили КПД лазера, решили задачу повышения эффективности охлаждения активного элемента и мощности выходных характеристик излучения.

Сущность второго варианта заключается в том, что в модуле слэб-лазера с диодной накачкой и зигзагообразным ходом лучей, который содержит установленные в корпусе: активный элемент, элементы накачки, расположенные на теплоотводах симметрично с двух сторон активного элемента, систему охлаждения, содержащую каналы, соединенные с каналами охлаждения активного элемента, и пластины из оптически прозрачного материала, размещенные с обеих сторон активного элемента, причем каждый элемент накачки снабжен линзой, расположенной на его излучающей части, особенность заключается в том, что корпус выполнен в виде двух параллелепипедов, двух корпусов соответственно, между которыми расположен активный элемент, между каждым элементом накачки и теплоотводом размещен термоинтерфейс, каналы, соединенные с каналами охлаждения активного элемента, выполнены прямоугольного сечения и расположены в каждом корпусе, система охлаждения выполнена в виде единого контура и снабжена входным, выходным каналами в первом корпусе, каналами в теплоотводах каждого корпуса и выполненными в каждом корпусе дополнительными и вторыми дополнительными каналами, входной, выходной каналы соединены: каналами первого корпуса с каналами теплоотводов этого корпуса, с дополнительными каналами первого корпуса и с вторыми дополнительными каналами первого корпуса, которые соединяются с аналогичными вторыми дополнительными каналами второго корпуса, соединенными с дополнительными каналами второго корпуса и каналами этого корпуса с каналами в теплоотводах, дополнительные каналы каждого корпуса соединены с каналами прямоугольного сечения каждого корпуса, между входным каналом и дополнительным каналом первого корпуса, а также между вторым дополнительным каналом второго корпуса и дополнительным каналом этого корпуса установлены диафрагмы, каналы охлаждения активного элемента образованы активным элементом и пластинами из оптически прозрачного материала, линзы выполнены конформными, каждый элемент накачки установлен на отдельной посадочной поверхности, размещенной на теплоотводах, установленных на внешней поверхности каждого корпуса, при этом излучающая поверхность элементов накачки, размещенных вдоль каждого бокового края активного элемента, расположена под углом к его поверхности,.

Сущность третьего варианта заключается в том, что в модуле слэб-лазера с диодной накачкой и зигзагообразным ходом лучей, который содержит установленные в корпусе: активный элемент, элементы накачки, расположенные на теплоотводах симметрично с двух сторон активного элемента, систему охлаждения, содержащую каналы, соединенные с каналами охлаждения активного элемента, и пластины из оптически прозрачного материала, размещенные с обеих сторон активного элемента, причем каждый элемент накачки снабжен линзой, расположенной на его излучающей части, особенность заключается в том, что корпус выполнен в виде двух параллелепипедов, двух корпусов соответственно, между которыми расположен активный элемент, между каждым элементом накачки и теплоотводом размещен термоинтерфейс, каналы, соединенные с каналами охлаждения активного элемента, выполнены прямоугольного сечения и расположены в каждом корпусе, система охлаждения выполнена в виде единого контура и снабжена входным, выходным каналами в первом корпусе, каналами в теплоотводах каждого корпуса и выполненными в каждом корпусе дополнительными и вторыми дополнительными каналами, входной, выходной каналы соединены: каналами первого корпуса с каналами теплоотводов этого корпуса, с дополнительными каналами первого корпуса и с вторыми дополнительными каналами первого корпуса, которые соединяются с аналогичными вторыми дополнительными каналами второго корпуса, соединенными с дополнительными каналами второго корпуса и каналами этого корпуса с каналами в теплоотводах, дополнительные каналы каждого корпуса соединены с каналами прямоугольного сечения каждого корпуса, между входным каналом и дополнительным каналом первого корпуса, а также между вторым дополнительным каналом второго корпуса и дополнительным каналом этого корпуса установлены диафрагмы, каналы охлаждения активного элемента образованы активным элементом и пластинами из оптически прозрачного материала, линзы выполнены конформными, каждый элемент накачки установлен на отдельной посадочной поверхности, размещенной на теплоотводах, установленных на внешней поверхности каждого корпуса, при этом излучающая поверхность элементов накачки, размещенных вдоль торцов активного элемента, расположена под углом к его поверхности.

Сущность четвертого варианта заключается в том, что в модуле слэб-лазера с диодной накачкой и зигзагообразным ходом лучей, который содержит установленные в корпусе: активный элемент, элементы накачки, расположенные на теплоотводах симметрично с двух сторон активного элемента, систему охлаждения, которая содержит каналы, соединенные с каналами охлаждения активного элемента, и пластины из оптически прозрачного материала, размещенные с обеих сторон активного элемента, причем каждый элемент накачки снабжен линзой, расположенной на его излучающей части, особенность заключается в том, что корпус выполнен в виде двух параллелепипедов, двух корпусов соответственно, между которыми расположен активный элемент, между каждым элементом накачки и теплоотводом размещен термоинтерфейс, каналы, соединенные с каналами охлаждения активного элемента, выполнены прямоугольного сечения и расположены в каждом корпусе, система охлаждения выполнена в виде единого контура и снабжена входным, выходным каналами в первом корпусе, каналами в теплоотводах каждого корпуса и выполненными в каждом корпусе дополнительными и вторыми дополнительными каналами, входной, выходной каналы соединены: каналами первого корпуса с каналами теплоотводов этого корпуса, с дополнительными каналами первого корпуса и с вторыми дополнительными каналами первого корпуса, которые соединяются с аналогичными вторыми дополнительными каналами второго корпуса, соединенными с дополнительными каналами второго корпуса и каналами этого корпуса с каналами в теплоотводах, дополнительные каналы каждого корпуса соединены с каналами прямоугольного сечения каждого корпуса, между входным каналом и дополнительным каналом первого корпуса, а также между вторым дополнительным каналом второго корпуса и дополнительным каналом этого корпуса установлены диафрагмы, каналы охлаждения активного элемента образованы активным элементом и пластинами из оптически прозрачного материала, линзы выполнены конформными, каждый элемент накачки установлен на отдельной посадочной поверхности, размещенной на теплоотводах, установленных на внешней поверхности каждого корпуса, при этом излучающая часть элементов накачки, размещенных по периметру активного элемента, расположенных под углом к его поверхности.

Принцип действия модуля слэб-лазера по второму, третьему и четвертому вариантам аналогичен работе модуля по первому варианту. А достигаемый при этом технический результат такой же, как и при осуществлении модуля слэб-лазера по первому варианту. Отличие заключается в том, что реализация устройства модуля по второму, третьему и четвертому вариантам позволяет обеспечить высокую мощность выходных характеристик излучения за счет размещения посадочных поверхностей под углом, т.к. позволяет размещать большее количество элементов накачки (размещая излучающую поверхность элементов накачки под углом к поверхности активного элемента), на порядок увеличивая запасенную в инверсной населенности энергию. Это особенно важно при условии, что размеры АЭ определены технологией его изготовления.

Для увеличения мощности и эффективности накачки на каждую пластину из оптически прозрачного материала нанесено просветляющее покрытие со стороны элементов накачки.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности существенных признаков аналога, позволило выявить совокупность существенных отличительных признаков от прототипа, изложенных в формуле изобретения.

Следовательно, заявленное изобретение соответствует условию «новизна».

Для проверки соответствия заявленного изобретения условию «изобретательский уровень» заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного устройства. В результате поиска не выявлены технические решения с этими признаками. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

На фиг. 1 представлен общий вид МСЛ по первому варианту.

На фиг. 2 - разрез А-А на фиг. 1.

На фиг. 3 - разрез Б-Б на фиг. 1 (все варианты).

На фиг. 4 - разрез В-В на фиг. 1 (все варианты).

На фиг. 5 - разрез Г-Г на фиг. 4 (все варианты).

На фиг. 6 - разрез А-А на фиг. 1 по второму варианту.

На фиг. 7 представлен общий вид МСЛ по третьему варианту.

Модуль слэб-лазера (МСЛ) с диодной накачкой и зигзагообразным ходом лучей по первому варианту (фиг. 1-5) содержит установленные в корпусе: активный элемент (АЭ) 1, элементы накачки 2, теплоотводы 3, пластины 4 из оптически прозрачного материала, конформные линзы 5, термоинтерфейс 6 и систему охлаждения (СО).

Корпус выполнен составным в виде двух параллелепипедов, двух корпусов 7, 8 соответственно. Между корпусами 7, 8 установлен АЭ 1 (слэб) в виде пластины со скошенными торцами под углом 45°. Каждый элемент накачки установлен на отдельной посадочной поверхности 9, являющейся частью теплоотводов 3, установленных на внешней поверхности каждого корпуса 7, 8. Излучающая поверхность элементов накачки располагается параллельно поверхности активного элемента.

Между каждым элементом накачки 2 и теплоотводом 3 размещен термоинтерфейс 6 (например, припой сплав Розе). Т.к. каждый элемент накачки установлен на отдельной посадочной поверхности, это позволило повысить эффективность теплопередачи между элементами накачки и корпусом теплоотвода за счет равномерного распределения термоинтерфейса, а также исключить контакт между интерфейсами элементов накачки.

Каждый элемент накачки снабжен конформной линзой 5, расположенной на его излучающей части. Пластины 4 размещены вдоль АЭ с обеих сторон. На каждую пластину со стороны элементов накачки нанесено просветляющее покрытие на длину волны накачки.

СО выполнена в виде единого контура для охлаждения АЭ и элементов накачки и содержит входной, выходной каналы а7 в первом корпусе 7 и выполненные в каждом корпусе 7, 8: диафрагмы 10, каналы е7, ƒ7, k7, е8, ƒ8, k8 в теплоотводах, каналы охлаждения δ7, δ8 активного элемента, соединенные с каналами прямоугольного сечения g7, g8, каналы b7, b8, дополнительные каналы d7, d8 и вторые дополнительные каналы с7, с8.

Каналы охлаждения δ7, δ8 АЭ 1 образованы пластинами 4 и АЭ и имеют прямоугольное сечение. Входной канал а7 разделяется на три потока по следующим каналам в корпусе 7: каналы b?, дополнительные каналы d7 и вторые дополнительные каналы с7.

Каналы b7 соединены с каналами е7, ƒ7, k7 теплоотводов 3 корпуса 7, дополнительные каналы d7 соединяются с каналами прямоугольного сечения g7, соединенными, в свою очередь, с каналом δ7 охлаждения АЭ. Вторые дополнительные каналы с7 соединены с аналогичными каналами c8 во втором корпусе 8, соединенными в этом корпусе с дополнительными каналами d8 и каналами b8 с каналами е8, ƒ8, k8 теплоотводов 3. Между входным каналом а7 и дополнительным d7, а также между вторым дополнительным каналом c8 второго корпуса 8 и дополнительным каналом d8 этого корпуса установлены диафрагмы 10 (диафрагма в корпусе 8 выполнена аналогично, как и в корпусе 7).

Модуль слэб-лазера (МСЛ) с диодной накачкой и зигзагообразным ходом лучей по второму варианту (фиг. 1, 3-6) содержит установленные в корпусе: активный элемент (АЭ) 1, элементы накачки 2, теплоотводы 3, пластины 4 из оптически прозрачного материала, конформные линзы 5, термоинтерфейс 6 и систему охлаждения (СО).

Корпус выполнен составным в виде двух параллелепипедов, двух корпусов 7, 8, соответственно. Между корпусами 7, 8 установлен АЭ 1 (слэб) в виде пластины со скошенными торцами под углом 45°. Элементы накачки 2 расположены на теплоотводах 3 симметрично с двух сторон АЭ 1 и вдоль него. Каждый элемент накачки установлен на отдельной посадочной поверхности 9, являющейся частью теплоотводов 3, установленных на внешней поверхности каждого корпуса 7, 8. При этом посадочные поверхности, на которых установлены элементы накачки, размещенные вдоль каждого бокового края АЭ, расположены под углом к его поверхности. Таким образом, излучающая поверхность элементов накачки, размещенных вдоль каждого бокового края АЭ, расположена под углом си к его поверхности (фиг. 6), что позволяет оптимизировать накачку путем оптимального согласования излучения накачки и АЭ (за счет возможности изменения углового положения посадочной поверхности).

Между каждым элементом накачки 2 и теплоотводом 3 размещен термоинтерфейс 6 (например, припой сплав Розе). Т.к. каждый элемент накачки установлен на отдельной посадочной поверхности, это позволило повысить эффективность теплопередачи между элементами накачки и корпусом теплоотвода за счет равномерного распределения термоинтерфейса, а также исключить контакт между интерфейсами элементов накачки.

Каждый элемент накачки снабжен конформной линзой 5, расположенной на его излучающей части. Пластины 4 размещены вдоль АЭ с обеих сторон. На каждую пластину со стороны элементов накачки нанесено просветляющее покрытие на длину волны накачки.

СО выполнена в виде единого контура для охлаждения АЭ и элементов накачки и содержит входной, выходной каналы а7 в первом корпусе 7 и выполненные в каждом корпусе 7, 8: диафрагмы 10, каналы е7, ƒ7, k7, e8, ƒ8, k8 в теплоотводах, каналы охлаждения δ7, δ8 активного элемента, соединенные с каналами прямоугольного сечения g7, g8, каналы b7, b8, дополнительные каналы d7, d8 и вторые дополнительные каналы с7, с8.

Каналы охлаждения δ7, δ8 АЭ 1 образованы пластинами 4 и АЭ и имеют прямоугольное сечение. Входной канал а7 разделяется на три потока по следующим каналам в корпусе 7: каналы b7, дополнительные каналы d7 и вторые дополнительные каналы с7.

Каналы b7 соединены с каналами е7, ƒ7, k7 теплоотводов 3 корпуса 7, дополнительные каналы d7 соединяются с каналами прямоугольного сечения g7, соединенными в свою очередь с каналом δ7 охлаждения АЭ. Вторые дополнительные каналы с7 соединены с аналогичными каналами с8 во втором корпусе 8, соединенными в этом корпусе с дополнительными каналами d8 и каналами b8 с каналами е8, ƒ8, k8 теплоотводов 3. Между входным каналом а7 и дополнительным d7, а также между вторым дополнительным каналом с8 второго корпуса 8 и дополнительным каналом d8 этого корпуса установлены диафрагмы 10 (диафрагма в корпусе 8 выполнена аналогично, как и в корпусе 7).

Модуль слэб-лазера (МСЛ) с диодной накачкой и зигзагообразным ходом лучей по третьему варианту (фиг. 2, 3-5, 7) содержит установленные в корпусе: активный элемент (АЭ) 1, элементы накачки 2, теплоотводы 3, пластины 4 из оптически прозрачного материала, конформные линзы 5, термоинтерфейс 6 и систему охлаждения (СО).

Корпус выполнен составным в виде двух параллелепипедов, двух корпусов 7, 8, соответственно. Между корпусами 7, 8 установлен АЭ 1 (слэб) в виде пластины со скошенными торцами под углом 45°. Элементы накачки 2 расположены на теплоотводах 3 симметрично с двух сторон АЭ 1 и вдоль него. Каждый элемент накачки установлен на отдельной посадочной поверхности 9, являющейся частью теплоотводов 3, установленных на внешней поверхности каждого корпуса 7, 8. При этом, посадочные поверхности, на которых установлены элементы накачки, размещенные вдоль торцов АЭ, расположены под углом к его поверхности. Таким образом, элементы накачки, размещенные вдоль торцов АЭ, расположены под углом α2 к его поверхности (фиг. 7), что позволяет оптимизировать накачку путем оптимального согласования излучения накачки и АЭ (за счет возможности изменения углового положения посадочной поверхности).

Между каждым элементом накачки 2 и теплоотводом 3 размещен термоинтерфейс 6 (например, припой сплав Розе). Т.к. каждый элемент накачки установлен на отдельной посадочной поверхности, это позволило повысить эффективность теплопередачи между элементами накачки и корпусом теплоотвода за счет равномерного распределения термоинтерфейса, а также исключить контакт между интерфейсами элементов накачки.

Каждый элемент накачки снабжен конформной линзой 5, расположенной на его излучающей части. Пластины 4 размещены вдоль АЭ с обеих сторон. На каждую пластину со стороны элементов накачки нанесено просветляющее покрытие на длину волны накачки.

СО выполнена в виде единого контура для охлаждения АЭ и элементов накачки и содержит входной, выходной каналы а7 в первом корпусе 7 и выполненные в каждом корпусе 7, 8: диафрагмы 10, каналы е7, ƒ7, k7 е8, ƒ8, k8 в теплоотводах, каналы охлаждения δ7, δ8 активного элемента, соединенные с каналами прямоугольного сечения g7, g8, каналы b7, b8, дополнительные каналы d7, d8 и вторые дополнительные каналы с7, с8.

Каналы охлаждения δ7, δ8 АЭ 1 образованы пластинами 4 и АЭ и имеют прямоугольное сечение. Входной канал а7 разделяется на три потока по следующим каналам в корпусе 7: каналы b7, дополнительные каналы d7 и вторые дополнительные каналы с7.

Каналы b7 соединены с каналами е7, ƒ7, k7 теплоотводов 3 корпуса 7, дополнительные каналы d7 соединяются с каналами прямоугольного сечения g7, соединенными, в свою очередь, с каналом δ7 охлаждения АЭ. Вторые дополнительные каналы с7 соединены с аналогичными каналами с8 во втором корпусе 8, соединенными в этом корпусе с дополнительными каналами d8 и каналами b8 с каналами е8, ƒ8, k8 теплоотводов 3. Между входным каналом а7 и дополнительным d7, а также между вторым дополнительным каналом с8 второго корпуса 8 и дополнительным каналом d8 этого корпуса установлены диафрагмы 10 (диафрагма в корпусе 8 выполнена аналогично, как и в корпусе 7).

Модуль слэб-лазера (МСЛ) с диодной накачкой и зигзагообразным ходом лучей по четвертому варианту (фиг. 3-7) содержит установленные в корпусе: активный элемент (АЭ) 1, элементы накачки 2, теплоотводы 3, пластины 4 из оптически прозрачного материала, конформные линзы 5, термоинтерфейс 6 и систему охлаждения (СО).

Корпус выполнен составным в виде двух параллелепипедов, двух корпусов 7, 8 соответственно. Между корпусами 7, 8 установлен АЭ 1 (слэб) в виде пластины со скошенными торцами под углом 45°. Элементы накачки 2 расположены на теплоотводах 3 симметрично с двух сторон АЭ 1 и вдоль него. Каждый элемент накачки установлен на отдельной посадочной поверхности 9, являющейся частью теплоотводов 3, установленных на внешней поверхности каждого корпуса 7, 8. При этом посадочные поверхности, на которых установлены элементы накачки, размещенные по периметру АЭ, расположены под углом к его поверхности. Таким образом, излучающая поверхность элементов накачки, размещенных по периметру АЭ, расположена под углом α1 и α2 к его поверхности (фиг. 6, 7), что позволяет оптимизировать накачку путем оптимального согласования излучения накачки и АЭ (за счет возможности изменения углового положения посадочной поверхности).

Между каждым элементом накачки 2 и теплоотводом 3 размещен термоинтерфейс 6 (например, припой сплав Розе). Т.к. каждый элемент накачки установлен на отдельной посадочной поверхности, это позволило повысить эффективность теплопередачи между элементами накачки и корпусом теплоотвода за счет равномерного распределения термоинтерфейса, а также исключить контакт между интерфейсами элементов накачки.

Каждый элемент накачки снабжен конформной линзой 5, расположенной на его излучающей части. Пластины 4 размещены вдоль АЭ с обеих сторон. На каждую пластину со стороны элементов накачки нанесено просветляющее покрытие на длину волны накачки.

СО выполнена в виде единого контура для охлаждения АЭ и элементов накачки и содержит входной, выходной каналы а7 в первом корпусе 7 и выполненные в каждом корпусе 7, 8: диафрагмы 10, каналы е7, ƒ7, k7, е8, ƒ8, k8 в теплоотводах, каналы охлаждения δ7, δ8 активного элемента, соединенные с каналами прямоугольного сечения g7, g8, каналы b7, b8, дополнительные каналы d7, d8 и вторые дополнительные каналы с7, с8.

Каналы охлаждения δ7, δ8 АЭ 1 образованы пластинами 4 и АЭ и имеют прямоугольное сечение. Входной канал а7 разделяется на три потока по следующим каналам в корпусе 7: каналы b7, дополнительные каналы d7 и вторые дополнительные каналы с7.

Каналы b7 соединены с каналами е7, ƒ7, k7 теплоотводов 3 корпуса 7, дополнительные каналы d7 соединяются с каналами прямоугольного сечения g7, соединенными, в свою очередь, с каналом δ7 охлаждения АЭ. Вторые дополнительные каналы с7 соединены с аналогичными каналами с8 во втором корпусе 8, соединенными в этом корпусе с дополнительными каналами d8 и каналами b8 с каналами е8, ƒ8, k8 теплоотводов 3. Между входным каналом а7 и дополнительным d7, а также между вторым дополнительным каналом с8 второго корпуса 8 и дополнительным каналом d8 этого корпуса установлены диафрагмы 10 (диафрагма в корпусе 8 показана аналогично, как и в корпусе 7).

МСЛ по первому варианту работает следующим образом. На элементы накачки 2 (фиг. 1-5) подается напряжение питания, они начинают генерировать излучение накачки β, проходящее через линзы 5, образуя световой поток накачки γ. Элементы накачки расположены параллельно АЭ 1. Излучение накачки, формирующееся от массива элементов накачки, согласуется формой пятна с формой АЭ 1, при этом площадь его накачиваемой поверхности максимально эффективно заполняется излучением накачки. Часть излучения накачки поглощается АЭ 1, часть поглощенной энергии накачки идет на тепловые потери. С левого торца в АЭ 1 входит лазерное излучение (фиг. 1) с апертурой, максимально закрывающую площадь АЭ 1. Далее лазерное излучение внутри АЭ за несколько проходов многократно усиливается на полном внутреннем отражении от стенок АЭ, и выходит на правом торце АЭ.

При работе устройства мощность тепловыделения АЭ 1 достаточно высока, а часть электрической энергии, подаваемой на элементы накачки 2, тратится на тепловые потери. Поэтому требуется эффективное охлаждение не только АЭ 1, но и элементов накачки 2. Охлаждение происходит следующим образом. Охлаждающая жидкость (ОЖ) подается в СО АЭ и элементов накачки через общее отверстие а7 (фиг. 5) и разделяется на три потока: по каналу b7 к каналам е7, ƒ7, k7 теплоотводов в корпусе 7; по дополнительному каналу d7 через канал прямоугольного сечения g7 к каналу δ7 охлаждения АЭ; по каналу с7 к аналогичному каналу с8 в корпусе 8. Канал с8 разделяется на каналы d8 и b8, аналогичные каналам в корпусе 7, которые, в свою очередь, соединяются: d8 через канал g8 прямоугольного сечения с каналом δ8 охлаждения АЭ, b8 - с каналами e8, ƒ8, k8 в теплоотводах корпуса 8.

Каналы δ7, δ8 охлаждения АЭ образованы максимальной площадью поверхности АЭ 1 и пластинами 4. Поток ОЖ протекает вдоль всей поверхности АЭ 1, контактируя с ней, и таким образом, охлаждая его.

Из каналов d7, d8 корпусов 7 и 8 ОЖ перемещается в каналы g7, g8 (фиг. 1, 3) и затем проходит через каналы прямоугольной формы δ7, δ8. На выходе из каналов δ7, δ8 на противоположном конце АЭ 1 ОЖ в обратном порядке выходит через каналы g7, g8 корпусов 7 и 8, затем через каналы d7, d8, а также с7, с8, расположенные с противоположной стороны, и выводится из МСЛ по каналу а7.

Охлаждение элементов накачки происходит следующим образом. Из каналов b7 и b8 корпусов 7, 8 ОЖ по каналам е7, е8 поступает в каналы ƒ7, ƒ8, которые, в свою очередь, разделяются на многочисленные каналы k7, k8. Пройдя каналы k7, k8, ОЖ в обратном порядке через ƒ7, ƒ8, е7, е8, поступает в каналы b7, b8, с8, с7 и выводится из МСЛ по каналу а7. При этом термоинтерфейс 6 обеспечивает передачу тепла от элементов накачки 2 к рабочей поверхности теплоотводов 3.

Так происходит охлаждение элементов накачки 2 и АЭ 1. Таким образом, в конструкции МСЛ для охлаждения элементов накачки и АЭ предусмотрен общий вход и выход а7. На входе в каналы охлаждения активного элемента разместили дросселирующую диафрагму 10, позволяющую эффективно согласовать охлаждение активного элемента и элементов накачки.

МСЛ по второму, третьему и четвертому вариантам работает аналогично МСЛ по первому варианту. Отличие заключается в угловом положении посадочных поверхностей, которое определяет световой поток излучения γ1 и γ2 от элементов накачки 2 (фиг. 6, 7). Изменение угла посадочных поверхностей по боковым и торцевым направлениям зависит от геометрических размеров активного элемента, которые, как правило, ограничены технологией его производства. Это особенно важно для эффективного заполнения кристалла излучением накачки и, как следствие, получение высоких параметров выходного излучения.

Таким образом, представленные данные свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- средство, воплощающее заявленное устройство при его осуществлении, предназначено для использования в оптико-механической промышленности при изготовлении лазерных устройств повышенной мощности;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».


МОДУЛЬ СЛЭБ-ЛАЗЕРА С ДИОДНОЙ НАКАЧКОЙ И ЗИГЗАГООБРАЗНЫМ ХОДОМ ЛУЧЕЙ (ВАРИАНТЫ)
МОДУЛЬ СЛЭБ-ЛАЗЕРА С ДИОДНОЙ НАКАЧКОЙ И ЗИГЗАГООБРАЗНЫМ ХОДОМ ЛУЧЕЙ (ВАРИАНТЫ)
МОДУЛЬ СЛЭБ-ЛАЗЕРА С ДИОДНОЙ НАКАЧКОЙ И ЗИГЗАГООБРАЗНЫМ ХОДОМ ЛУЧЕЙ (ВАРИАНТЫ)
МОДУЛЬ СЛЭБ-ЛАЗЕРА С ДИОДНОЙ НАКАЧКОЙ И ЗИГЗАГООБРАЗНЫМ ХОДОМ ЛУЧЕЙ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 431-440 из 706.
29.05.2019
№219.017.6881

Взрывозащитная камера

Изобретение относится к средствам обеспечения безопасности взрывных работ и может быть использовано при создании взрывных камер и сооружений, предназначенных для герметичной локализации продуктов взрыва при испытательных работах и в аварийных ситуациях. Взрывозащитная камера содержит...
Тип: Изобретение
Номер охранного документа: 0002450243
Дата охранного документа: 10.05.2012
29.05.2019
№219.017.6978

Способ проверки качества функционирования стенда для определения массо-центровочных и массо-инерционных характеристик твердого тела вращения

Изобретение относится к измерительной технике и предназначено для использования при контроле качества функционирования стенда, используемого для определения массо-центровочных и массо-инерционных характеристик изделий машиностроения роторного типа, в том числе сложных «длинных» осесимметричных...
Тип: Изобретение
Номер охранного документа: 0002445592
Дата охранного документа: 20.03.2012
29.05.2019
№219.017.69ab

Виброчастотный микромеханический акселерометр

Изобретение относится к измерительной технике. Акселерометр содержит подложку (1) из диэлектрического материала, опорные элементы (3), неподвижно закрепленные на подложке (1), инерционную массу (2), расположенную с зазором относительно подложки (1) и связанную с опорными элементами (3) через...
Тип: Изобретение
Номер охранного документа: 0002442992
Дата охранного документа: 20.02.2012
06.06.2019
№219.017.73fe

Устройство для определения чувствительности энергетического материала к трению ударного характера

Изобретение относится к области исследования или анализа энергетических материалов (ЭМ) путем определения их физических свойств, а именно, к устройствам для определения характеристик чувствительности ЭМ к трению ударного характера. Заявляемое устройство содержит расположенные в корпусе напротив...
Тип: Изобретение
Номер охранного документа: 0002690523
Дата охранного документа: 04.06.2019
06.06.2019
№219.017.7436

Коллектор с рекуперацией энергии свч прибора

Изобретение относится к области электронной техники, а именно к коллекторам сверхвысокочастотных (СВЧ) приборов О-типа с рекуперацией остаточной энергии электронного пучка. Коллектор с рекуперацией энергии СВЧ прибора содержит металлический цилиндрический корпус с закрытым торцом, внутренняя...
Тип: Изобретение
Номер охранного документа: 0002690530
Дата охранного документа: 04.06.2019
07.06.2019
№219.017.74d8

Способ получения и обработки изображений, сформированных с помощью протонного излучения

Использование: для протонной радиографии. Сущность изобретения заключается в том, что в камере для размещения объекта исследования сначала размещают тест-объект, который представляет собой подложку с одинаковыми реперными отметками, например стальными шарами, в узлах ортогональной решетки и...
Тип: Изобретение
Номер охранного документа: 0002690713
Дата охранного документа: 05.06.2019
07.06.2019
№219.017.7530

Способ получения пористого изделия из урана

Изобретение относится к изготовлению пористого изделия из урана. Способ включает загрузку исходного порошка гидрида урана в форму из водородостойкого материала, размещение формы в реакционной камере, вакуумирование и термическое разложение гидрида урана с последующим спеканием. Загрузку...
Тип: Изобретение
Номер охранного документа: 0002690764
Дата охранного документа: 05.06.2019
07.06.2019
№219.017.7561

Устройство уничтожения кристалла микросхемы памяти

Изобретение относится к области защиты конфиденциальной информации от несанкционированного доступа, а именно к устройствам уничтожения электронных носителей информации. Технический результат заключается в обеспечении надежного предотвращения доступа к носителю информации за счет экстренного...
Тип: Изобретение
Номер охранного документа: 0002690781
Дата охранного документа: 05.06.2019
08.06.2019
№219.017.7577

Способ измерения энергии сверхширокополосного электромагнитного излучения

Изобретение относится к области техники измерений характеристик сверхширокополосного (СШП) электромагнитного излучения (ЭМИ) и может быть использовано для оценки эффективности новых типов генераторов данного вида излучения. Технический результат - повышение точности измерения, а также...
Тип: Изобретение
Номер охранного документа: 0002690858
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7f2d

Способ экспериментального определения динамического коэффициента внешнего трения

Изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения при взаимном перемещении образцов. Сущность: определяют динамический коэффициент внешнего трения между двумя расположенными друг на друге и совершающими относительное...
Тип: Изобретение
Номер охранного документа: 0002444000
Дата охранного документа: 27.02.2012
Показаны записи 261-262 из 262.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
29.05.2018
№218.016.5700

Способ герметизации блока охлаждения активного элемента в твердотельном лазере

Изобретение относится к лазерной технике. Способ герметизации блока охлаждения активного элемента в твердотельном лазере включает два этапа: установку трубки для активного элемента и установку активного элемента в трубку, на первом этапе устанавливают трубку с прижимами и уплотнениями, на...
Тип: Изобретение
Номер охранного документа: 0002655045
Дата охранного документа: 23.05.2018
+ добавить свой РИД