×
08.06.2019
219.017.7577

СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области техники измерений характеристик сверхширокополосного (СШП) электромагнитного излучения (ЭМИ) и может быть использовано для оценки эффективности новых типов генераторов данного вида излучения. Технический результат - повышение точности измерения, а также возможность измерения энергии СШП ЭМИ, в том числе в виде одиночных электромагнитных импульсов, от генераторов с произвольной формой диаграммы направленности их излучающих систем. В способе измерения энергии СШП ЭМИ, регистрация напряженности импульсов электрического поля СШП ЭМИ производится в двух взаимно перпендикулярных плоскостях путем поворота излучающей системы генератора СШП ЭМИ с последующей передачей зарегистрированных данных на ЭВМ для получения значений напряженности импульсов электрического поля. В недостающих точках пространства для определения напряженности импульсов электрического поля СШП ЭМИ используется следующая аппроксимация: где Е1(θ, 0, t), E2(θ, π, t), E3(θ, π/2, t), E4(θ, 3π/2, t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2 соответственно. Энергия СШП ЭМИ вычисляется, используя выражение где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,y(θi, ϕ, tk) - напряженность электрического поля на i-й измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Z - волновое сопротивление свободного пространства, n - число измерительных позиций, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области техники измерений характеристик сверхширокополосного электромагнитного излучения и может быть использовано для оценки эффективности новых типов генераторов данного вида излучения.

Термином «сверхширокополосное электромагнитное излучение» (СШП ЭМИ) обозначается класс коротких электромагнитных импульсных сигналов длительностью менее 1 не (в англоязычной литературе используется термин «ultra-wide band (UWB) short pulse»).

Известна установка, реализующая способ измерения плотности потока мощности электромагнитного поля (Патент РФ №2 353 942, МПК G01R 29/08, опубликовано: 27.04.2009) по методу сравнения при работе измеряемой и эталонной антенн на передачу, включающая генератор ВЧ-сигналов, второй выход которого соединен с измерителем мощности, а первый - с устройством переключения антенн, к первому выходу которого подключена измеряемая антенна, а ко второму выходу - эталонная антенна, при этом измеряемая и эталонная антенны посредством излучаемого электромагнитного поля соединены с приемной антенной приемного устройства, размещенного в экранированной камере, которое измеряет напряженности полей, создаваемых измеряемой и эталонной антеннами, а затем вычисляет плотность потока мощности электромагнитного поля, создаваемую измеряемой антенной, с последующим отображением на дисплее.

Недостатками данного технического решения являются невозможность измерения плотности потока энергии сверхширокополосного электромагнитного излучения, отсутствие измерения энергии электромагнитного поля, прошедшую через сферическую поверхность, ограниченную заданным телесным углом.

Известно устройство, реализующее способ измерения плотности потока энергии электромагнитного поля (Патент РФ №2441 248, МПК G01R 29/08, опубликовано: 27.01.2012), имеющее две антенны и два измерительных канала - для электрического и магнитного полей. В каждом канале присутствуют усилители, звенья частотной коррекции и амплитудные детекторы. Сигналы с данных каналов поступают на цифроаналоговый преобразователь, результирующий числовые значения величин зарегистрированных сигналов электромагнитного поля, которые анализируются в процессоре, и с помощью множительного логического элемента И рассчитывается плотность потока энергии электромагнитного поля. Результат расчетных значений индуцируется на жидкокристаллический алфавитно-цифровой дисплей.

Недостатками данного технического решения являются невозможность измерения плотности потока энергии сверхширокополосного электромагнитного излучения, а также излучения с высокими значениями амплитуды напряженностей, отсутствие измерения энергии электромагнитного поля, прошедшую через интересующую нас сферическую поверхность, ограниченную заданным телесным углом.

Известна мобильная система удаленной регистрации параметров сверхширокополосного электромагнитного излучения (А.С. Белов, Д.А. Коконин. Мобильная система удаленной регистрации параметров сверхширокополосного электромагнитного излучения // Технологии ЭМС.-2017. - №2(61). - С. 36-43.), взятая за прототип. Данная система реализует способ измерения энергии сверхширокополосного электромагнитного излучения путем регистрации только напряженности электрического поля, т.к. регистрируемые электромагнитные импульсы имеют субнаносекундную длительность и при условии отсутствия переотражений на временном интервале наблюдения, электрическое и магнитное поля СШП ЭМИ связаны соотношением E/H=120⋅π. Ее канал обработки сигнала состоит из приемной антенны, соединенной с расширителем импульсов, который с помощью линии задержки соединен со входом цифрового стробоскопического осциллографа, связанным с портативным персональным компьютером. Синхронизация осциллографа осуществляется от соответствующего выхода расширителя импульсов. Все оборудование кроме приемной антенны помещено в экранированную кабину с целью защиты от воздействия мощных электромагнитных полей и паразитных помеховых сигналов. Приемная антенна представляет собой измерительный преобразователь напряженности импульсного электрического поля, переходная характеристика которого имеет форму близкую к ступенчатой. Поэтому, измерительный преобразователь осуществляет преобразование сигнала напряженности электрического поля в сигнал напряжения U(t) той же формы с минимальными искажениями - , где Kпр - коэффициент преобразования измерительного преобразователя, - радиус-вектор в точку постановки измерительного преобразователя. Размещение измерительного преобразователя вдоль эквипотенциали исследуемого поля производят с помощью лазерного дальномера и электронного теодолита, входящих в состав системы, что позволяет получить зависимость амплитудно-временных параметров излучения от угла относительно оси излучения с последующим пересчетом в энергию излучения, который реализуется по следующей формуле с помощью программного обеспечения, установленного на персональном компьютере:

где Z - волновое сопротивление свободного пространства (Z=377 Ом), θi, -угол между осью излучения и направлением на i-ую измерительную позицию, Δθ - угловой шаг размещения измерительных позиций, E(θi,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, Я - расстояние до раскрыва излучающей системы генератора СНЯТ ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

Недостатками данного технического решения являются возможность регистрации только периодически повторяющихся импульсов СШП ЭМИ, понижение точности измерения из-за наличия расширителя импульсов с линией задержи, возможность измерения энергии СШП ЭМИ от генераторов только с симметричной диаграммой направленности их излучающих систем.

Техническим результатом предлагаемого технического решения являются повышение точности измерения, а также возможность измерения энергии сверхширокополосного электромагнитного излучения, в том числе в виде одиночных электромагнитных импульсов, от генераторов с произвольной формой диаграммой направленности их излучающих систем.

Технический результат достигается тем, что в способе измерения энергии СШП ЭМИ, включающем регистрацию напряженности импульсов электрического поля сверхширокополосного электромагнитного излучения с использованием измерительного преобразователя и широкополосного цифрового осциллографа, регистрация напряженности импульсов электрического поля СШП ЭМИ производится в двух взаимно перпендикулярных плоскостях путем поворота излучающей системы генератора СШП ЭМИ, с последующей передачей зарегистрированных данных на ЭВМ, для получения значений напряженности импульсов электрического поля. В недостающих точках пространства для определения напряженности импульсов электрического поля СШП ЭМИ используется следующая аппроксимация:

где E1(θ,0,t), Е2(θ,π,t), E3(θ,π/2,t), Е4(θ,3π/2,t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2, соответственно (в сферической системе координат). Энергия сверхширокополосного электромагнитного излучения вычисляется, используя выражение

где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,yi,ϕ,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

На фигуре представлена схема устройства для измерения энергии СШП ЭМИ, включающая излучающую систему генератора СШП ЭМИ 1, измерительный преобразователь 2, экранированную кабину 5, в которую помещены широкополосный цифровой осциллограф 3 и ЭВМ 4.

Предлагаемый способ измерения энергии СШП ЭМИ реализуется следующим образом.

Измерительный преобразователь 2 осуществляет преобразование напряженности импульсов электрического поля СШП ЭМИ, создаваемого излучающей системой 1, в сигнал напряжения той же формы с минимальными искажениями. Регистрация импульсов напряжения на выходе измерительного преобразователя осуществляется с помощью широкополосного цифрового осциллографа 3. Для защиты от воздействия излучения осциллограф размещается в экранированной кабине 5.

Выражение для энергии излучения представляется в виде:

где Z - волновое сопротивление свободного пространства, - радиус-вектор в точку наблюдения с координатами (R, θ, ϕ) в сферической системе координат.

При проведении измерений в дальней зоне на расстоянии R от выходной апертуры излучающей системы генератора СШП ЭМИ 1 выражение (2) можно модифицировать следующим образом:

Таким образом, общая энергия излучения СШП ЭМИ пропорциональна интегралу от распределения квадрата напряженности поля излучения в пространстве. Измерение распределения напряженности электрического поля во всех точках пространства крайне трудоемко и невозможно без применения специальных средств, поэтому целесообразно проводить измерения только в двух взаимно перпендикулярных плоскостях, а для получения значений в недостающих точках использовать следующую аппроксимацию:

где E1(θ,0,t), E2(θ,π,t), Е3(θ,π/2,t), E4(θ,3π/2,t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2, соответственно.

Для ограниченного числа измерительных позиций и с учетом аппрок-симации (4) уравнение (3) имеет вид:

где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,yi,ϕ,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

Поворот оси излучения генератора СШП ЭМИ на углы θi позволяет поучить зависимость амплитудно-временных параметров излучения от угла относительно оси излучения, а поворот излучающей системы вдоль ее оси на углы 0, π, π/2, 3π/2 - несколько таких зависимостей во взаимно перпендикулярных плоскостях. Измеренные таким образом данные передаются на ЭВМ, где с помощью соответствующего программного обеспечения по формуле (5) реализуется расчет энергии СШП ЭМИ.


СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 796.
27.04.2013
№216.012.3b44

Способ определения сплошности покрытия изделия

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002480733
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.41ed

Интерферометр

Изобретение может быть использовано для контроля качества афокальных систем, в том числе крупногабаритных, а именно: плоских зеркал, светоделителей, плоскопараллельных пластин, клиньев, телескопических систем с увеличением, близким к единичному. Интерферометр содержит формирователь...
Тип: Изобретение
Номер охранного документа: 0002482447
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49ed

Переход волоконно-оптический

Изобретение относится к волоконно-оптической технике и может быть использовано для герметичного ввода оптического волокна через перегородку. Устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей с проходным...
Тип: Изобретение
Номер охранного документа: 0002484505
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5ab8

Система параметрической гидролокации с функцией получения акустического изображения целей

Использование: изобретение относится к области гидролокации и предназначено для обнаружения подводных целей и получения их акустического изображения. Сущность: в предложенной системе параметрической гидролокации излучение низкочастотных зондирующих сигналов формируют путем нелинейного...
Тип: Изобретение
Номер охранного документа: 0002488845
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.686e

Затвор люка камеры

Изобретение относится к машиностроению и может быть использовано при проектировании крупногабаритных камер высокого давления для испытания в них изделий. Затвор люка камеры содержит герметично установленную на люке камеры крышку, имеющую глубокую заходную часть и связанную с размещенным извне...
Тип: Изобретение
Номер охранного документа: 0002492381
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.688d

Складываемая аэродинамическая поверхность

Изобретение относится к области ракетной техники и, в частности к конструкциям складываемых аэродинамических поверхностей, находящихся под воздействием сильных аэродинамических возмущений. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную...
Тип: Изобретение
Номер охранного документа: 0002492412
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.740f

Контактный датчик

Изобретение относится к военной технике, в частности к средствам инициирования. Контактный датчик содержит два кольца, опорное и рабочее, установленных соосно и скрепленных между собой. На основании опорного кольца размещен кольцевой чувствительный элемент, а рабочее кольцо оснащено...
Тип: Изобретение
Номер охранного документа: 0002495368
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.74a5

Двухдиапазонная микрополосковая антенна круговой поляризации

Изобретение относится к антенно-фидерным устройствам, а именно к бортовым антеннам спутниковой навигации. Техническим результатом является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одиовходовым приемником. Двухдиапазонная...
Тип: Изобретение
Номер охранного документа: 0002495518
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.8345

Сцинтилляционный материал на основе zno-керамики, способ его получения и сцинтиллятор

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002499281
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.884d

Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата

Изобретение относится к средствам фиксации складывающихся аэродинамических поверхностей летательного аппарата. Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата содержит узел, обеспечивающий прилегание аэродинамических поверхностей к корпусу летательному...
Тип: Изобретение
Номер охранного документа: 0002500575
Дата охранного документа: 10.12.2013
Показаны записи 1-1 из 1.
10.05.2014
№216.012.c27e

Способ модификации ионосферной плазмы

Изобретение относится к области электричества, касается способа модификации ионосферной плазмы, который может быть использован для исследования околоземного пространства, задач дальней НЧ радиосвязи, а также в целях радиопротиводействия. Способ модификации ионосферной плазмы включает...
Тип: Изобретение
Номер охранного документа: 0002515539
Дата охранного документа: 10.05.2014
+ добавить свой РИД