×
26.08.2017
217.015.dbb0

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимии, а именно к способу изготовления водородного электрода для кислородно-водородного топливного элемента, и может найти применение в низкотемпературных топливных элементах, работающих с рабочей температурой окружающей среды. Водородный электрод для кислородно-водородного топливного элемента изготавливают путем закрепления палладиевой мембраны толщиной 1-30 мкм, с двух сторон покрытой слоем мелкодисперсной палладиевой черни, на пористой металлической основе методом контактной точечной сварки. Предлагаемый способ обеспечивает повышение удельной мощности и улучшение вольт-амперных характеристик ннзкотемпературного топливного элемента. 2 ил.

Заявляемое техническое решение относится к области электрохимии, а именно к изготовлению конструкционных элементов водородных насосов и топливных элементов, конкретно к изготовлению водородных электродов.

Актуальной задачей развития альтернативной энергетики является разработка кислородо-водородного топливного элемента с цельнометаллическим палладийсодержащим водородопроницаемым водородным электродом, работающего при низких (20-100°C) температурах. Это позволит использовать в топливном элементе жидкий электролит и приведет (за счет изменения трехфазной границы газ - металл токоотвода - электролит на двухфазную палладиевый сплав - электролит) к улучшению вольтамперных характеристик элемента, снижению поляризации, уменьшению внутреннего сопротивления и увеличению удельной мощности. Кроме того палладий является катализатором электродного процесса по всей двухфазной границе, поэтому не требуется дополнительного нанесения катализатора. Также возможно применение водородного электрода в составе двухэлектродной ячейки с протоносодержащим электролитом в составе водородного насоса или компрессора [К.А. Джусь, И.Г. Штатный, С.А. Григорьев / Наноструктурные электрокатализаторы для водородного компрессора с твердым полимерным электролитом // Вестник МИТХТ Химия и технология неорганических материалов», 2009, т.4, №6 (90)]

Палладий и его сплавы применяют для получения мембран, способных пропускать газообразный водород [Rothenberger K.S., Cugini A.V., Howard В.Н., Killmeyer R.P., Ciocco M.V., Morreale B.D. // Journal of Membrane Science. 2004. V. 244. P. 55-68]. Такие мембраны имеют рабочие температуры в интервале 200-800°C, так как в первую очередь предназначены для разделения высокотемпературных водородных смесей, получаемых пирогенетическими методами из органических водородосодержащих топлив. Из-за их высокой проницаемости и селективности по сравнению с другими материалами металлические водородопроводящие мембраны при высоких температурах остаются предметом интенсивных исследований. Легирование палладия влияет на диффузию водорода внутри мембраны, на скорость растворения и выделения атомов водорода, на рекомбинацию и диссоциацию молекул и, в меньшей степени, на адсорбцию и десорбцию.

Основными характеристиками палладиевых мембран для выделения водорода из газовых смесей являются скорость проникновения водорода через мембрану, ее прочность и стойкость при эксплуатации. Для мембраны же, выполняющей роль диффузионного электрода, добавляется важная характеристика - скорость электроэкстракции растворенного водорода на границе мембрана/электролит.

Процесс водородопроницаемости палладия и его сплавов состоит из трех основных стадий [Байчток Ю.К., Соколинский Ю.А., Айзенбуд М.Б. О лимитирующей стадии проницаемости водорода через мембраны из палладиевых сплавов. // Журнал физической химии. 1976. Т. 50. N 6. С. 1543-1546]:

- диссоциация водорода на входной поверхности мембраны, протекающая со скоростью νi,

- диффузия атомарного водорода через мембрану, протекающая со скоростью νД,

- рекомбинация атомов водорода в молекулы на выходной стороне мембраны, протекающая со скоростью vo.

Лимитирование той или иной стадии является предметом многочисленных исследований и зависит от многих факторов, например в случае особо чистого водорода лимитирующей является стадия диффузии, а в случае незначительных примесей серы, углеводородов и т.д. лимитирующими становятся стадии диссоциации на газовой стороне мембраны и(или) электроэкстракции на электролитной стороне. Последний случай является наиболее вероятным для патентуемого мембранного электрода, так как он будет работать не на чистом водороде. В таких условиях повысить скорость переноса водорода через мембрану можно модификацией поверхности палладиевой мембраны специальными «водородными переносчиками», повышающими скорости диффузии водорода на газовой стороне мембранного электрода и электроэкстракции на электролитной стороне.

Уровень техники мембранных металлических электродов представлен рядом американских патентов: US Patents №7,955,491; 9044715; 8778058; 8119205; 7611565; 7255721; 7022165; 9246176; RU №74242; 2256981; 2334310, 1840848.

Наиболее близким техническим решением к заявляемому является патент [RU №1840848 Водородный электрод из тонкой палладиевой пленки]. Согласно прототипу заявлен способ изготовлении водородного электрода для кислородно-водородного топливного элемента путем нанесения активной массы на пористую металлическую, например никелевую, основу в виде тонкой палладиевой пленки толщиной 15-25 микрон.

Основными недостатками описанного электрода являются низкие скорости переноса водорода при температурах окружающей среды и, как следствие, низкие удельные электрические характеристики устройств (низкотемпературного топливного элемента) на их основе.

Технической задачей является создание способа изготовления водородного электрода для кислородно-водородных топливных элементов, позволяющего создать топливные элементы с электрод-электролитными блоками с повышенными удельными электрическими характеристиками и рабочей температурой окружающей среды, т.е. с расширенными функциональными возможностями.

Для решения технической задачи предлагается изготавливать водородный электрод для кислородно-водородного топливного элемента, путем закрепления тонкой палладиевой мембраны на пористую металлическую, например никелевую, основу. При этом мембрану изготавливают в виде пленки толщиной 1-30 мкм из палладия, сплава палладия или металлического композита, содержащего на поверхности палладий или его сплав. Затем покрывают ее с двух сторон слоем мелкодисперсного металла и закрепляют покрытую таким образом мембрану на пористой металлической основе методом контактной точечной сварки. Мембрану можно изготавливать методами пластической деформации, термическим или магнетронным распылением, химическим или электрохимическим осаждением из водных или неводных растворов солей, покрытие дисперсным металлом осуществлять химическим восстановлением из водных растворов солей; электролитическим осаждением из водных растворов солей; магнетронным напылением пленки сплава Ренея с последующим диффузионным спеканием полученного «сэндвича» и вытравливанием неактивного компонента из поверхности пленки, а в качестве мелкодисперсного металла покрытия мембраны использовать металл группы «переносчиков водорода», т.е. из ряда металлов 4d, 5d, 6d элементов периодической системы Менделеева.

На фиг. 1 изображен водородный электрод из тонкой модифицированной металлической пленки, изготовленный предлагаемым способом, на фиг. 2 изображен водородный насос из двух водородных электродов фильтр-прессной сборки.

Электрод, изготовляемый заявленным способом (фиг. 1), включает палладийсодержащую мембрану 1, выполненную в виде фольги толщиной 1-30 мкм. На обе стороны мембраны 1 нанесен слой мелкодисперсного (наноразмерного) металлического порошка 2, например палладиевой черни. Палладийсодержащая фольга 1, с одной стороны, методом контактной точечной сварки - точки 3 закреплена на поверхности пористой металлической основы 4. Основа 4 металлически и электрически контактирует с металлической газораспределительной плитой 5. В объеме и на поверхности плиты 5 со стороны мембраны 1 сформирована система газораспределительных (продувочных) каналов 6, оканчивающаяся концевыми газовыми штуцерами 7 с кранами. Водородный насос (фиг 2) составлен из двух водородных электродов (фиг 1), соединенных в конструкцию четырьмя металлическими шпильками 8 при помощи гаек 9. 10 - матричный электролит, разделяющий водородные электроды (фиг. 1).

Пример изготовления заявляемого электрода.

Палладиевую заготовку прокатывали в механических валках в фольгу толщиной 20-30 мкм, затем отжигали при температуре 850°C в вакууме, отбеливали в отбеливающей смеси на основе 30% серной кислоты и помещали в раствор электрохимического палладирования, где фольгу с двух сторон электрохимически покрывали мелкодисперсной палладиевой чернью. Затем покрытую и высушенную на воздухе фольгу накладывали одной стороной на пористую металлическую основу, например никелевую, после чего сваривали их по поверхности точечной контактной сваркой во многих точках.

Изделие на основе вышеприведенного электрода водородного насоса (топливного элемента) изготавливается так. Два водородных электрода, представленных на фиг. 1, приводятся в контакт друг с другом со стороны, противоположной металлическим плитам 5, в процессе механической стяжки фильтрпрессной конструкции водородного насоса или топливного элемента при помощи четырех шпилек 8 и гаек 9. При этом слои мелкодисперсного (наноразмерного) металлического порошка 2 контактируют через матричный электролит 10, представляющий собой слой асбестовой бумаги, пропитанной 33% раствором электролита, например NaOH, таким образом, чтобы мелкодисперсное покрытие на электролитной стороне служило электрокатализатором электродного процесса окисления и восстановления водорода. Путем открытия кранов на концевых газовых штуцерах 7 осуществляется продувка системы газораспределительных каналов 6 и пор пористых никелевых пластин 4 водородом.

Через определенное время, когда в системе газораспределительных каналов 6 и порах пористой никелевой пластины остается чистый водород, один из кранов выходного штуцера 7 левого электрода (фиг. 2) закрывается и система переходит в рабочий режим. Водород, поступающий через поры пористой никелевой пластины 4, расположенной слева, подается к газовой поверхности левой палладийсодержащей мембраны 1, покрытой мелкодисперсным металлом, который хемосорбирует водород на поверхности своих частиц и ускоряет его поступление в объем палладийсодержащей мембраны - абсорбцию.

Далее абсорбированный водород диффундирует через фазу палладийсодержащего сплава и на электролитной поверхности, покрытой мелкодисперсным металлом, переходит в адсорбированную атомную фазу. Затем адсорбированный водород вступает в электродную реакцию на границе пористый металл/электролит с образованием протонсодержащих частиц в электролите 10 и отдачей электронов во внешнюю цепь на нагрузку через металлическую плиту 5, которая также является токоотводом. С правой стороны процессы симметрично электрохимически обращаются и их конечным результатом является образование в системе газораспределительных каналов 6 правого электрода избыточного водорода, который может накапливаться до определенных давлений (водородный компрессор) или использоваться потребителем в более чистом виде (водородный насос). Кислородо(воздушно)-водородный топливный элемент может быть сконструирован аналогично, путем замены правого водородного электрода на кислородный (воздушный) электрод.

Двустороннее покрытие поверхности мембраны слоем мелкодисперсного (наноразмерного) металлического порошка позволяет за счет уменьшения энергии активации лимитирующей стадии хемосорбции на газовой стороне и увеличения скорости электроэкстракции на электролитной стороне увеличить общую скорость процесса переноса водорода и как следствие электрические характеристики предлагаемого водородного электрода топливного кислородо-водородного элемента и(или) водородного насоса, например удельную мощность при температурах окружающей среды, что позволяет создать топливные элементы с электрод-электролитными блоками с повышенными удельными электрическими характеристиками и рабочей температурой окружающей среды, т.е. с расширенными функциональными возможностями.

Способ изготовления водородного электрода для кислородно-водородного топливного элемента, включающий закрепление тонкой палладиевой мембраны на пористую металлическую никелевую основу, отличающийся тем, что мембрану из палладия изготавливают толщиной 1-30 мкм, затем покрывают с двух сторон слоем мелкодисперсной палладиевой черни и закрепляют на основе методом контактной точечной сварки.
СПОСОБ ИЗГОТОВЛЕНИЯ ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ
СПОСОБ ИЗГОТОВЛЕНИЯ ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ
СПОСОБ ИЗГОТОВЛЕНИЯ ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 84.
14.12.2018
№218.016.a729

Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов

Способ изготовления водородного электрода для кислородно-водородного топливного элемента относится к области электрохимии, а именно к изготовлению конструкционных элементов водородных насосов и топливных элементов, конкретно к изготовлению водородных электродов. Он включает закрепление на...
Тип: Изобретение
Номер охранного документа: 0002674748
Дата охранного документа: 13.12.2018
17.03.2019
№219.016.e2c6

Устройство для измерения комплексных коэффициентов передачи и отражения свч-устройств с преобразованием частоты

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты (СВЧ-смесителей). Предлагается устройство для измерения комплексных коэффициентов передачи и отражения СВЧ-устройств...
Тип: Изобретение
Номер охранного документа: 0002682079
Дата охранного документа: 14.03.2019
27.04.2019
№219.017.3d0c

Способ восстановления латунных кожухотрубных теплообменников

Изобретение относится к теплоэнергетике и может быть использовано для очистки теплоэнергетического оборудования, где в качестве теплоносителя используется вода, в том числе полностью забитых и не пригодных к эксплуатации кожухотрубных теплообменников от отложений, представленных на 80-90%...
Тип: Изобретение
Номер охранного документа: 0002686251
Дата охранного документа: 24.04.2019
10.05.2019
№219.017.5176

Измерительный комплекс для поиска и диагностики подземных коммуникаций

Изобретение относится к электроизмерительной технике и может быть использовано для оценки фактического положения и состояния подземных коммуникаций. Технический результат: повышение надежности и достоверности диагностики подземных коммуникаций. Сущность: измерительный комплекс состоит из...
Тип: Изобретение
Номер охранного документа: 0002687236
Дата охранного документа: 08.05.2019
18.05.2019
№219.017.537f

Устройство для измерения и способ определения комплексных коэффициентов передачи свч-смесителей

Изобретения относятся к радиоизмерительной технике и могут быть использованы при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты (СВЧ-смесителей). Технический результат заключается в увеличении точности определения комплексных коэффициентов...
Тип: Изобретение
Номер охранного документа: 0002687850
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5cac

Устройство для измерения комплексных коэффициентов передачи и отражения свч-устройств с преобразованием частоты

Изобретение относится к радиоизмерительной технике и может быть использовано при измерении комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты. Сущность заявленного решения заключается в том, что в устройство для измерения комплексных коэффициентов передачи и...
Тип: Изобретение
Номер охранного документа: 0002687980
Дата охранного документа: 17.05.2019
29.05.2019
№219.017.62e6

Способ определения производных катехоламинов в моче

Изобретение относится к способу определения производных катехоламинов в биологической жидкости (моче), который может найти применение в клинической диагностике. Способ определения производных катехоламинов в моче методом высокоэффективной жидкостной хроматографии отличается тем, что...
Тип: Изобретение
Номер охранного документа: 0002688184
Дата охранного документа: 21.05.2019
20.06.2019
№219.017.8da3

Способ получения 1-адамантилферроцена

Изобретение относится к cпособу получения 1-адамантилферроцена из ферроцена и производного адамантана при катализе кислотой Льюиса в среде 1,2-дихлорэтана при кипячении в течение 2 часов. В качестве производного адамантана используют 1-адамантанол, а в качестве кислоты Льюиса - трибромид или...
Тип: Изобретение
Номер охранного документа: 0002691998
Дата охранного документа: 19.06.2019
17.07.2019
№219.017.b4f1

Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов

Изобретение относится к области электрохимии, а именно к устройству конструкционных элементов водородных насосов и топливных элементов, конкретно к устройству водородных электродов. Способ включает закрепление палладиевой мембраны толщиной 1-30 мкм, покрытой с двух сторон слоем мелкодисперсной...
Тип: Изобретение
Номер охранного документа: 0002694431
Дата охранного документа: 15.07.2019
23.07.2019
№219.017.b6ce

Способ стабилизации шкалы масс и калибрант для его осуществления

Изобретение относится к аналитическому приборостроению, а именно к способам стабилизации регистрируемых масс в масс-спектрометрии высокого разрешения. Способ стабилизации шкалы масс в масс-спектрометрии высокого разрешения включает калибровку масс-спектрометра в режиме "Lock-mass" с подачей...
Тип: Изобретение
Номер охранного документа: 0002695033
Дата охранного документа: 18.07.2019
Показаны записи 41-44 из 44.
13.12.2019
№219.017.ed49

Пресс-гранулятор шестеренного типа

Изобретение относится к области сельского хозяйства и может быть использовано для изготовления гранул из спрессовываемого материала. Пресс-гранулятор содержит опору, обкатывающие головки, расположенные в зацеплении с матрицей, привод вращения и расположенные один в другом бункеры. Внешний...
Тип: Изобретение
Номер охранного документа: 0002708868
Дата охранного документа: 11.12.2019
21.03.2020
№220.018.0eca

Способ профилактики и коррекции метаболических и функциональных нарушений центральной нервной системы в условиях стресса

Изобретение относится к экспериментальной медицине и фармакологии и может быть использовано для профилактики и коррекции нейродегенеративных заболеваний, вызываемых оксидативным повреждением мозга и сопровождающихся функциональными расстройствами центральной нервной системы (ЦНС). Способ...
Тип: Изобретение
Номер охранного документа: 0002717107
Дата охранного документа: 18.03.2020
27.06.2020
№220.018.2c20

Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов, модифицированного наноструктурированным палладием

Изобретение относится к области электрохимии, а именно к устройству конструкционных элементов водородных насосов и кислородно-водородных топливных элементов, конкретно к устройству водородных электродов. Способ включает закрепление палладиевой мембраны толщиной 1-30 мкм, покрытой с двух сторон...
Тип: Изобретение
Номер охранного документа: 0002724609
Дата охранного документа: 25.06.2020
23.05.2023
№223.018.6e36

Способ повышения продуктивности микроорганизмов в средах с детерминированным изотопным составом

Изобретение относится к области биотехнологии. Предложен способ повышения продуктивности микроорганизмов в среде с заданным изотопным составом. Способ включает подготовку суспензии микроорганизмов и её перемешивание в присутствии стабильных изотопов в процессе культивирования. Причем...
Тип: Изобретение
Номер охранного документа: 0002756473
Дата охранного документа: 30.09.2021
+ добавить свой РИД