×
26.08.2017
217.015.daf0

Способ получения композиционного пористого биоактивного покрытия

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам напыления композиционных пористых биоактивных покрытий и может быть использовано для формирования покрытий на поверхности внутрикостных имплантатов, фильтрующих покрытий, носителей катализаторов. Способ получения композиционного пористого биоактивного покрытия включает напыление на подложку на первой стадии слоя металлического покрытия под углом к подложке более 45°, напыление на него на второй стадии слоя из того же металлического материала под углом к подложке менее 45° и напыление на полученные слои на третьей стадии биоактивного керамического слоя, при этом напыление слоев на всех трех стадиях осуществляют при температуре подложки 200-900°С, а биоактивный керамический слой на третьей стадии напыляют под углами 45-90° к поверхности слоя металлического покрытия, сформированного на второй стадии напыления. Техническим результатом изобретения является увеличение сдвиговой прочности композиционного покрытия при сохранении его пористости 10-60% и размера пор 10-600 мкм. 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области металлургии, а более конкретно к формированию пористых покрытий на поверхности, и может быть использовано для формирования покрытий на внутрикостных имплантатах, фильтрующих покрытиях, носителях катализаторов.

Известен способ напыления пористых покрытий в четыре стадии [Internationale WO 86|06617. 20 November 1986 (20.11.86). Coating of an Implant Body]. На первой стадии напыляют плотное металлическое титановое покрытие на подложку. На второй стадии напыляют пористое металлическое титановое покрытие за счет увеличения размера напыляемых частиц и уменьшения мощности плазмотрона. На третьей стадии напыляют смесь металлического и керамического биоактивного порошка гидроксиапатита для формирования переходного слоя. На четвертой стадии напыляют керамический биоактивный слой гидроксиапатита.

Покрытие, сформированное по данному способу, имеет следующие недостатки. Точечные контакты между сферическими частицами пористого титанового слоя, напыленного на второй стадии, определяют низкую прочность покрытия в целом. Размер пор ограничен, а сами поры имеют неблагоприятную форму: то расширяются, то сужаются. Это неблагоприятно для врастания и функционирования новой костной ткани. При напылении четвертого керамического слоя существенно уменьшается величина пористости и размер пор покрытия, напыленного на второй стадии. Эти недостатки существенно уменьшают эффективность использования таких покрытий на поверхности имплантатов. В результате покрытие разрушается в организме человека. Поэтому в ряде стран такие покрытия используются только с дополнительным цементом, несколько повышающим прочность покрытий, но полностью закрывающим поры.

Известен способ формирования композиционного покрытия, в котором первый плотный слой на подложку напыляют под углом соударения частиц с подложкой более 45° [Патент РФ "Способ получения покрытий" №2146302, 7 С23С 4/12, 10.03.2000, Бюл. №7]. Второй слой покрытия напыляют под углом к подложке меньше 45°. При напылении покрытия по данному способу формируется пористое покрытие в виде гребней и впадин, образуя трехмерное капиллярно-пористое покрытие. Основной объем пористого пространства расположен в таких покрытиях во впадинах. Отсутствие биоактивного слоя на поверхности покрытия увеличивает сроки врастания новой костной ткани в пористое пространство титанового покрытия.

Наиболее близким является способ получения композиционного пористого покрытия [патент РФ "Способ получения покрытий" №2423545, С23С 4/12, С23С 4/04. Дата публикации: 10.04.2012], включающий напыление слоя металлического материала под углом к подложке более 45° на первой стадии и напыление слоя из того же металлического материала под углом менее 45° - на второй стадии, отличающийся тем, что на дополнительной третьей стадии осуществляют напыление биоактивного керамического слоя под углом 90°, при этом напыление слоев осуществляют при температуре на 100-1000°C выше температуры плавления напыляемого материала и со скоростью напыляемых частиц 100-700 м/с.

При напылении керамического слоя по способу, описанному в прототипе, под углом 90° к положке, напыляемые частицы керамического порошка соударяются с поверхностью гребней второго слоя под углом менее 45°, что приводит к формированию пористости в керамическом слое и снижению его механических свойств, и к снижению прочности соединения композиционного покрытия с костной тканью. Для применений биоактивных композиционных покрытий необходимо кроме высоких значений пористости до 60% иметь высокие значения прочности этих покрытий.

Этот третий способ напыления пористого покрытия приняли в качестве прототипа.

Задачей изобретения является: способ повышения механических свойств всех слоев композиционного покрытия, в том числе биоактивного керамического покрытия при максимальной плотности керамического покрытия.

Техническим результатом изобретения является повышение сдвиговой прочности композиционного покрытия в целом при сохранении его пористости покрытия 10-60% и размера пор 10-600 мкм.

Технический результат достигается тем, что способ получения композиционного пористого биоактивного покрытия, включающий напыление на первой стадии под углом к подложке более 45° и на второй стадии под углом к подложке менее 45° и напыление керамического покрытия на третьей стадии, согласно изобретению напыление керамического слоя покрытия на третьей стадии ведут под углами 45-90° к поверхности слоя металлического покрытия, сформированного на второй стадии, с нагревом подложки на всех стадиях напыления до 200-900°C.

Получаемый технический результат можно объяснить тем, что подогрев подложки до 200-900°C позволяет повысить прочность всех трех слоев покрытия, а получение прочного керамического слоя на третей стадии объясняется дополнительным фактором, напылением плотного керамического покрытия под углами 45-90° к поверхности слоя металлического покрытия.

В предлагаемом способе на первой стадии процесса напыляют плотный металлический слой под углом более 45°, на второй стадии процесса под углом к подложке менее 45° напыляют пористое покрытие в виде гребней и впадин. Пористость второго слоя покрытия определяет пористость покрытия в целом. На третьей стадии процесса напыляют керамическое покрытие под углом 45-90° к поверхности гребней (второй слой покрытия). Напыление керамического покрытия на третьей стадии преследует цель сформировать покрытие на всей свободной поверхности гребней, сформированных на второй стадии напыления. Напыление слоя керамического покрытия под углом 45-90° к поверхности гребней позволяет получить на поверхности гребней плотное и прочное керамическое покрытие без существенных уменьшений пористости второго слоя, полученного на второй стадии.

Пример 1

При напылении композиционного покрытия по предлагаемому способу сформировали покрытие в три стадии при подогреве подложки 200°C. На первой стадии напылили титановый слой из титановой проволоки толщиной 100 мкм. Напыление вели под углом 70-90° к подложке. На второй стадии напыление вели из титановой проволоки под углом 30°, толщина покрытия 600 мкм. На третьей стадии напыление вели под углами 45-90° к поверхности гребней из порошка гидроксиапатита с размером частиц 25-40 мкм, толщина покрытия гидроксиапатита 90 мкм. Среднее значение сдвиговой прочности композиционного покрытия 120 МПа, пористость покрытия 55%, средний размер пор 600 мкм.

Пример 2

При напылении композиционного покрытия по предлагаемому способу сформировали покрытие в три стадии при подогреве подложки 400°C. На первой стадии напылили танталовый слой из танталовой проволоки толщиной 50 мкм. Напыление вели под углом 90° к подложке. На второй стадии напыление вели из танталовой проволоки под углом 35°, толщина покрытия 600 мкм. На третьей стадии напыление вели под углами 50-80° к поверхности гребней из порошка гидроксиапатита с размером частиц 40-63 мкм, толщина покрытия гидроксиапатита 100 мкм. Среднее значение сдвиговой прочности композиционного покрытия 130 МПа, пористость покрытия 46%, средний размер пор 450 мкм.

Пример 3

При напылении композиционного покрытия по предлагаемому способу сформировали покрытие в три стадии при подогреве подложки 900°C. На первой стадии напылили титановый слой из порошка с размером частиц 30-71 мкм толщиной 50 мкм. Напыление вели под углом 90° к подложке. На второй стадии напыление вели из титанового порошка с размером частиц 30-71 мкм под углом 25°, толщина покрытия 500 мкм. На третьей стадии напыление вели под углом под углами 50-80° к поверхности гребней из порошка гидроксиапатита с размером частиц 25-32 мкм, толщина покрытия гидроксиапатита 30 мкм. Сдвиговая прочность покрытия 125 МПа, пористость покрытия 60%, средний размер пор 500 мкм.

Таким образом, поставленная задача решена. В предлагаемом способе напыления композиционного пористого покрытия получен объем пористости покрытия - 30-60%, размер пор - 300-600 мкм. Сдвиговая прочность покрытия выше, чем в прототипе.

Способ получения композиционного пористого биоактивного покрытия, включающий напыление на подложку на первой стадии слоя металлического покрытия под углом к подложке более 45°, напыление на него на второй стадии слоя из того же металлического материала под углом к подложке менее 45° и напыление на полученные слои на третьей стадии биоактивного керамического слоя, отличающийся тем, что напыление слоев на всех трех стадиях осуществляют при температуре подложки 200-900°С, а биоактивный керамический слой на третьей стадии напыляют под углом 45-90° к поверхности слоя металлического покрытия, сформированного на второй стадии напыления.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 108.
20.04.2023
№223.018.4b20

Способ получения материала ионотранспортной мембраны

Изобретение относится к способу получения материала ионотранспортной мембраны, включающему твердофазный синтез BiErO в течение 20 часов при 800°С из оксидов BiO и ErO, синтез AgO осаждением из водного раствора нитрата серебра и горячее прессование шихты BiErO, AgO и металлического индия в среде...
Тип: Изобретение
Номер охранного документа: 0002775471
Дата охранного документа: 01.07.2022
20.04.2023
№223.018.4b25

Способ спекания смеси порошков alo и aln

Изобретение относится к технологии получения поликристаллической керамики на основе оксинитрида алюминия с достаточной степенью прозрачности в оптическом диапазоне, которая может быть использована в производстве защитных устройств, электронике и других областях техники. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002775445
Дата охранного документа: 30.06.2022
20.04.2023
№223.018.4b7e

Сварочная проволока с высоким содержанием азота

Изобретение может быть использовано для ручной сварки в среде защитных газов деталей и конструкций из немагнитных высокопрочных аустенитных сталей с высокими концентрациями азота, например в нефтегазовой, судостроительной или машиностроительной промышленности. Сварочная проволока содержит...
Тип: Изобретение
Номер охранного документа: 0002768949
Дата охранного документа: 25.03.2022
20.04.2023
№223.018.4c47

Способ формирования пористого покрытия на рельефной поверхности

Изобретение относится к способу напыления трехмерных капиллярно-пористых (ТКП) покрытий на предварительно сформированную рельефную поверхность и может быть использовано в инженерной практике для повышения эффективности теплообмена на поверхности нагретых узлов в условиях смены агрегатного...
Тип: Изобретение
Номер охранного документа: 0002763852
Дата охранного документа: 11.01.2022
20.04.2023
№223.018.4ca5

Способ получения 21r-сиалоновой керамики

Изобретение относится к получению 21R-сиалоновой керамики, которую используют в качестве режущих пластин для резки металлов и в других областях при износе и ударе. Порошок 21R-сиалона, полученного методом самораспространяющегося высокотемпературного синтеза, и спекающую добавку в виде смеси...
Тип: Изобретение
Номер охранного документа: 0002757607
Дата охранного документа: 19.10.2021
22.04.2023
№223.018.514d

Устройство для получения металлических порошков сферической формы

Изобретение относится к порошковой металлургии, а именно к устройствам для получения металлических порошков сферической формы методом плазменной атомизации проволоки. Устройство состоит из источника питания, камеры распыления с водным охлаждением, емкости для сбора порошка, установленной в...
Тип: Изобретение
Номер охранного документа: 0002794209
Дата охранного документа: 12.04.2023
17.05.2023
№223.018.64a8

Способ получения керамики на основе оксинитрида алюминия

Изобретение относится к способам получения керамики на основе оксинитрида алюминия, которая может быть использована для изготовления режущего инструмента, огнеупоров и материалов в металлургической промышленности, инфракрасных и видимых окон, а также для прозрачной брони. Заявляемый способ...
Тип: Изобретение
Номер охранного документа: 0002794376
Дата охранного документа: 17.04.2023
21.05.2023
№223.018.6837

Способ оценки длины волокна заготовки при плоском деформированном состоянии

Изобретение относится к области обработки металлов давлением, а именно к способу оценки длины волокна при плоском деформированном состоянии. Способ оценки длины волокна заготовки при плоском деформированном состоянии заключается в том, что осуществляют деформацию заготовки в рамках исследуемого...
Тип: Изобретение
Номер охранного документа: 0002794566
Дата охранного документа: 21.04.2023
21.05.2023
№223.018.6984

Способ получения антибактериальных металлических фильтров из сферического порошка коррозионно-стойкой стали с серебром

Изобретение относится к области металлургии. Способ получения антибактериальных металлических фильтров включает выплавку слитка коррозионно-стойкой стали 03Х17Н10М2 с добавлением 0,2 мас.% серебра, гомогенизационный отжиг слитков, первичную деформацию литых заготовок, ротационную ковку,...
Тип: Изобретение
Номер охранного документа: 0002794905
Дата охранного документа: 25.04.2023
01.06.2023
№223.018.7486

Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани

Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Технический результат изобретения - получение керамических образцов на основе β-трикальцийфосфата с общей...
Тип: Изобретение
Номер охранного документа: 0002729761
Дата охранного документа: 12.08.2020
Показаны записи 61-62 из 62.
01.06.2023
№223.018.74c6

Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием

Изобретение относится к области металлургии, а более конкретно к формированию коррозионно- и износостойких покрытий с высокой плотностью и твердостью. Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием включает равномерное перемещение покрытия...
Тип: Изобретение
Номер охранного документа: 0002765559
Дата охранного документа: 01.02.2022
01.06.2023
№223.018.750c

Устройство для получения металлического порошка

Устройство относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, несколько устройств для подачи пруткового материала в плазменный...
Тип: Изобретение
Номер охранного документа: 0002749403
Дата охранного документа: 09.06.2021
+ добавить свой РИД