×
25.08.2017
217.015.d2ba

Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к деформационнотермической обработке сплава TiNiTa с эффектом памяти формы и может быть использовано в медицине при изготовлении стентов. Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы включает термомеханическую обработку заготовки, сочетающую интенсивную пластическую деформацию и дорекристаллизационный отжиг. Интенсивную пластическую деформацию проводят в три этапа. На первом этапе осуществляют прокатку при температуре не выше 750°C с достижением накопленной степени деформации (е) более 400%. На втором этапе осуществляют ротационную ковку в несколько стадий со снижением температуры в диапазоне от 700 до 600°C и степенью деформации не более 90%. На третьем этапе осуществляют волочение в несколько стадий со снижением температуры в диапазоне от 600 до 200°C и степенью деформации не более 60%. Отжиг проводят после каждого этапа деформации при температуре 200-450°C. Повышается прочность при сохранении пластичности наноструктурного сплава. 1 ил., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к деформационнотермической обработке сплава TiNiTa с эффектом памяти формы. Может быть использовано в металлургии, машиностроении и медицине. Особенно привлекательно его использование в медицинских устройствах типа «стент», «Кафа-фильтр» и прочих.

Известен способ изготовления сверхупругого сплава никель-титан (JP 6065741, МПК C22F 1/10, опубл. 24.08.94 г.), согласно которому сплав, содержащий 50-51 ат. % никеля, остальное - титан, подвергают отжигу, холодной деформации со степенью деформирования 15-60%, а затем фиксируют определенную форму сплава и нагревают его до 175-600°С.

Недостатком способа является использование лишь одного механизма повышения комплекса свойств сплавов - создание полигонизованной дислокационной субструктуры, что ограничивает возможность одновременного улучшения их механических (прочностных и пластических) характеристик и функциональных свойств, таких как максимальная обратимая деформация и максимальное реактивное напряжение.

Известен способ получения сверхупругого титан-никелевого сплава (JP 58161753, МПК C22F 1/10, опубл. 26.09.83 г.), включающий предварительную закалку крупнозернистого сплава, последующую холодную деформацию прокаткой со степенью деформации более 20% и отжиг при температуре 250-550°С.

Недостатками способа являются относительно низкие степени деформации (е менее 100%) и ограничения по степени измельчения микроструктуры, не позволяющие достигать наиболее высоких механических и функциональных свойств.

Наиболее близким к предложенному является способ получения ультрамелкозернистых сплавав «титан-никель» с эффектом памяти формы, включающий термомеханическую обработку, сочетающую деформацию и дорекристаллизационный отжиг. Перед термомеханической обработкой осуществляют предварительную закалку сплава, а деформацию осуществляют в два этапа, причем на первом этапе проводят интенсивную пластическую деформацию с накопленной истинной степенью деформации е более 400% в интервале температур 300-550°С, а на втором этапе проводят деформацию прокаткой или экструзией, или волочением со степенью деформации не менее 20% при температурах 20-500°С, а отжиг проводят при температурах 350-550°С в течение 0,5-2,0 часов (Патент РФ №2266973 МПК C22F 1/18, опубл. 27.12.2005 г.).

Недостатком известного способа является высокая степень анизотропии структуры и свойств материала из-за неоднородной морфологии зерен в продольном и поперечном сечении заготовки, большая доля малоугловых границ. Такой материал обладает повышенной прочностью, но ограниченной пластичностью, не обеспечивающей высокой стойкости к усталостному разрушению.

Задачей изобретения является повышение механических характеристик сплавов титан-никель-тантал с эффектом памяти формы с одновременным улучшением функциональных свойств за счет создания нанокристаллической структуры.

Техническим результатом является повышение прочности и сохранение пластичности наноструктурного сплава титан-никель-тантал с эффектом памяти формы, характеризующимся структурой, образующейся после механического воздействия на сплав, из нанокристаллических аустенитных зерен В2 фазы, в которой объемная доля зерен с размером не более 0,1 мкм и с коэффициентом формы зерен не более 2 во взаимно-перпендикулярных плоскостях составляет не менее 90%, причем более чем 50% зерен имеют большеугловые границы, разориентированные относительно соседних зерен на углы от 15° до 90°.

Способ получения проволоки из наноструктурированного сплава титан-никель-тантал с эффектом памяти формы, включающий термомеханическую обработку заготовки из сплава титан-никель-тантал, сочетающую интенсивную пластическую деформацию и дорекристаллизационный отжиг, согласно изобретению интенсивную пластическую деформацию проводят в три этапа. На первом этапе осуществляют прокатку при температуре не выше 750°С с достижением накопленной степени деформации е более 400%, на втором этапе осуществляют ротационную ковку в несколько стадий со снижением температуры в диапазоне 600-700°С и степенью деформации не более 90%, и третьим этапом волочение в несколько стадий при температурах, снижающихся в диапазоне с 600 до 200°С, и степенью деформации не более 60%. Отжиг проводят после каждого этапа деформации при температуре, равной t=200-450°С.

Предложенное изобретение позволяет получить более высокий уровень механических и усталостных свойств в сочетании с хорошими функциональными свойствами - эффект памяти формы.

Повышение прочности материала обусловлено очень малым размером зерна (не более 0,1 мкм) в структуре, что обеспечивает увеличение напряжения течения при пластической деформации согласно известному соотношению Холло-Петча (Большие пластические деформации и разрушение металлов. Рыбин В.В. М.: Металлургия, 1986, 224 с.). Значительное повышение прочности достигается также большим количеством зерен с большеугловыми границами (не менее 50%), которые в сравнении с малоугловыми и специальными границами обеспечивают наибольший вклад в упрочнение (Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.). При этом формирование зерен с коэффициентом формы не более 2 (соотношение ширины и длины зерна 1:2) снижает неоднородность пластического течения металла, уровень микронапряжений, тем самым предотвращает раннюю локализацию деформации, приводящую к разрушению материала.

Та имеет атомный радиус RTa=0,1467 нм, близкий к размеру атомов Ti (RTi=0,1462 нм), хотя и несколько больше. По размерному фактору этот элемент должен хорошо замещать Ti на его подрешетках в сплавах на основе TiNi.

Атомы Та в никеле растворяются в незначительных количествах, тогда как в титане эти элементы хорошо растворяются, вплоть до образования при температурах выше 900°С непрерывных твердых растворов.

Влияние Та на температуры фазовых превращений в сплавах типа типа (Ni51Ti49)1-xTax и Ni50Ti50-xTax следующее: в сплавах (Ni51Ti49)1-xTax температура фазового превращения возрастает с увеличением содержания Та, особенно когда содержание Та еще меньше чем 4%. В сплавах типа Ni50Ti50-xTax температура фазового превращения уменьшается с увеличением содержания тантала. Температура начала мартенситного превращения менее чувствительна к изменениям содержания Ni в тройных сплавах Ni-Ti-Ta, чем в бинарных сплавах Ni-Ti. Температура фазового превращения в тройных сплавах Ni-Ti-Ta главным образом контролируется отношением Ni/Ti в матрице Ni-Ti.

Присутствие Та повышает химическую стойкость сплава. 1% Та блокирует выход ионов никеля в кислых средах и снижает в щелочных. Повышение до 3% Та делает сплав инертным к большей части кислот и щелочей.

Пример конкретной реализации изобретения:

В качестве заготовки использовали цилиндрический пруток (100×20) мм сплава Ti48.4Ni50.6Ta1. На первом этапе обработки проводили прокатку заготовки при температуре 750°С, количество проходов n=8. При этом заготовку после каждого прохода поворачивали вокруг своей продольной оси по часовой стрелке на угол 90° для обеспечения равномерности проработки структуры. Между каждым проходом осуществляли отжиг при температуре 450°С. В общей сложности накопленная степень деформации составила е=400%. В результате была получена цельная заготовка длиной 210 мм и диаметром 8 мм.

После прокатки заготовку подвергали пластической деформации в несколько стадий ротационной ковкой при постепенном снижении температуры в интервале t=600-700°C.

В результате обработки получили пруток диаметром 4,5 мм длиной 400 мм.

На следующем этапе осуществляют пластическую деформацию заготовки волочением. Обработку проводят при постепенном снижении температуры в интервале 200-600°С. Степень деформации менее 60% не приводит к существенному изменению структуры. Промежуточные отжиги на различных стадиях деформации в диапазоне температур 200-450°С служат для повышения деформируемости массивной заготовки, а выбор температуры отжига зависит от предварительной накопленной степени деформации. На конечных стадиях деформации с целью формирования однородной нанокристаллической структуры по всему сечению проволоки с размером зерен 0,09-0,1 мкм используют промежуточные низкотемпературные отжиги при температуре не более 200°С. Промежуточные отжиги при температуре более 200°С приводят к интенсификации процессов возврата и не позволяют сформировать нанокристаллическую структуру.

Сочетание пластической деформации и промежуточных отжигов способствует дальнейшей эволюции полученной после проката структуры: формированию новых субзеренных границ, их трансформации в зеренные, тем самым увеличению доли большеугловых границ, формированию новых нанокристаллических зерен, снижению плотности решеточных дислокаций за счет одновременно протекающих процессов возврата и динамической рекристаллизации.

Из полученного прутка были изготовлены образцы для исследования микроструктуры. Образцы для исследований были вырезаны электроэрозионным методом в виде пластин в поперечном и продольном сечениях прутка. Для приготовления тонких фольг пластины подвергались механическому утонению до толщины 150 мкм и последующему электролитическому полированию на установке Tenupol-5 (Struers) при комнатной температуре в электролите, состоящем из хлорной кислоты (НClO4) и бутанола (С4Н9OН).

Исследования микроструктуры показывают, что в результате обработки по предложенному способу в сплаве титан-никель-тантал происходит существенное измельчение структуры и формируется нанокристаллическая структура, в которой до 90% составляют зерна В2 фазы со средним размером 0,09-0,1 мкм по светлому и темному полю и с коэффициентом формы зерен не более 2 во взаимно-перпендикулярных плоскостях (рис. 1). Погрешность измерений составила не более 5%.

Исследования показали, что предложенный способ термомеханической обработки сплава титан-никель-тантал, сочетающий прокатку и последующую ротационную ковку и волочение (e=90%) с отжигами в процессе обработки при заданных температурно-временных параметрах, позволил получить следующие характеристики материала: предел прочности до 1750 МПа при пластичности 19%, максимальная обратимая деформация - 8%. Достигнутые показатели по совокупности механических и функциональных свойств превосходят показатели, обеспечиваемые по прототипу.

Таким образом, предложенное изобретение позволяет сформировать в сплаве титан-никель-тантал с эффектом памяти формы нанокристаллическую структуру В2 фазы, обеспечивающую материалу повышенную прочность, пластичность и улучшенные эксплуатационные характеристики.

Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы, включающий термомеханическую обработку заготовки из сплава титан-никель-тантал, сочетающую интенсивную пластическую деформацию и дорекристаллизационный отжиг, отличающийся тем, что интенсивную пластическую деформацию проводят в три этапа, причем на первом этапе осуществляют прокатку при температуре не выше 750°C с достижением накопленной степени деформации (е) более 400%, на втором этапе осуществляют ротационную ковку в несколько стадий со снижением температуры в диапазоне от 700 до 600°C и степенью деформации не более 90%, а на третьем этапе осуществляют волочение в несколько стадий при температурах, снижающихся в диапазоне от 600 до 200°C, и степенью деформации не более 60%, при этом отжиг проводят после каждого этапа деформации при температуре t=200-450°C.
Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы
Источник поступления информации: Роспатент

Показаны записи 91-100 из 117.
27.12.2019
№219.017.f28e

Керамический материал с низкой температурой спекания на основе системы диоксида циркония - оксида алюминия - оксида кремния

Изобретение относится к области получения высокоплотной керамики на основе ZrO-AlO-SiO. Разработанные материалы могут быть использованы для получения огнеупорных изделий, высокотемпературных деталей машин и печного оборудования. Керамический материал имеет следующий химический состав, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002710341
Дата охранного документа: 25.12.2019
31.12.2020
№219.017.f4a9

Керамический композиционный материал

Изобретение относится к керамическому материаловедению, получению композиционного материала с матрицей диоксида циркония, стабилизированного в тетрагональной форме, и оксида алюминия. Материал может быть использован для изготовления изделий конструкционного и медицинского назначения, в...
Тип: Изобретение
Номер охранного документа: 0002710648
Дата охранного документа: 30.12.2019
15.02.2020
№220.018.02b4

Способ получения окрашенного однофазного пирофосфата кальция

Изобретение может быть использовано в производстве материалов для восстановления дефектов костной ткани, зубных пломб. Способ получения окрашенного однофазного пирофосфата кальция включает смешение лактата кальция с двузамещенным фосфатом аммония при их мольном соотношении, равном 1. Смешение...
Тип: Изобретение
Номер охранного документа: 0002714188
Дата охранного документа: 12.02.2020
15.02.2020
№220.018.02d1

Способ определения площади контакта оправки и заготовки при винтовой прошивке

Изобретение относится к области обработки металлов давлением. Способ заключается в том, что заготовку прошивают на глубину, равную 0,5÷0,75 от ее исходной длины, процесс прошивки останавливают, заготовку снимают с оправки. Далее определяют размеры заготовки и оправки. На основе измерений в...
Тип: Изобретение
Номер охранного документа: 0002714225
Дата охранного документа: 13.02.2020
17.02.2020
№220.018.0325

Керметный порошок для плазменного напыления

Изобретение относится к материалу керметного порошка для плазменного напыления и может использоваться для формирования износостойких покрытий. Керметный порошок содержит 20-80 массовых процентов карбида титана, упрочняющие фазы CrC, WC, TiN в количестве 20-45% относительно карбида TiC и...
Тип: Изобретение
Номер охранного документа: 0002714269
Дата охранного документа: 13.02.2020
15.04.2020
№220.018.1473

Способ изготовления керамики на основе карбида кремния, армированного волокнами карбида кремния

Изобретение относится к способу получения керамического композита из карбида кремния, упрочненного волокном из карбида кремния, который может быть использован для работы в кислых и агрессивных средах, в условиях высоких температур и длительного механического воздействия. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002718682
Дата охранного документа: 13.04.2020
07.06.2020
№220.018.24b3

Способ раскатки трубных заготовок

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб раскаткой полых трубных заготовок в стане винтовой прокатки. Полую трубную заготовку - гильзу подвергают раскатке в четырехвалковом стане винтовой прокатки, все валки которого...
Тип: Изобретение
Номер охранного документа: 0002722952
Дата охранного документа: 05.06.2020
18.06.2020
№220.018.2779

Способ получения биомедицинского материала "никелид титана-полилактид" с возможностью контролируемой доставки лекарственных средств

Изобретение относится к технологии получения композиционного биомедицинского материала никелид титана-полилактид с возможностью контролируемой доставки лекарственных средств. Предложенный способ получения биомедицинского материала никелид титана-полилактид включает получение раствора...
Тип: Изобретение
Номер охранного документа: 0002723588
Дата охранного документа: 16.06.2020
21.07.2020
№220.018.3528

Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью

Изобретение относится к области медицины, а именно к рентгеноэндоваскулярной дилатации. Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью, включает автоматизированное плетение импланта на оправку модифицированным намоточным станком по...
Тип: Изобретение
Номер охранного документа: 0002727031
Дата охранного документа: 17.07.2020
20.04.2023
№223.018.4b20

Способ получения материала ионотранспортной мембраны

Изобретение относится к способу получения материала ионотранспортной мембраны, включающему твердофазный синтез BiErO в течение 20 часов при 800°С из оксидов BiO и ErO, синтез AgO осаждением из водного раствора нитрата серебра и горячее прессование шихты BiErO, AgO и металлического индия в среде...
Тип: Изобретение
Номер охранного документа: 0002775471
Дата охранного документа: 01.07.2022
Показаны записи 81-90 из 90.
25.06.2020
№220.018.2a83

Способ комбинированной лучевой и фотодинамической терапии

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для фотодинамической терапии. Производят однократное внутривенное введение фотосенсибилизатора Хлорин Е6 в дозе 10 мг/кг массы тела. Проводят спектрометрию через 3 ч после окончания введения препарата. Проводят...
Тип: Изобретение
Номер охранного документа: 0002724480
Дата охранного документа: 23.06.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
04.07.2020
№220.018.2e84

Способ получения углеграфитового композиционного материала

Изобретение относится к области металлургии, а именно к способу получения углеграфитового композиционного материала, имеющего высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. Способ получения углеграфитового композиционного материала включает вакуумную...
Тип: Изобретение
Номер охранного документа: 0002725522
Дата охранного документа: 02.07.2020
21.07.2020
№220.018.3528

Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью

Изобретение относится к области медицины, а именно к рентгеноэндоваскулярной дилатации. Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью, включает автоматизированное плетение импланта на оправку модифицированным намоточным станком по...
Тип: Изобретение
Номер охранного документа: 0002727031
Дата охранного документа: 17.07.2020
20.04.2023
№223.018.4b25

Способ спекания смеси порошков alo и aln

Изобретение относится к технологии получения поликристаллической керамики на основе оксинитрида алюминия с достаточной степенью прозрачности в оптическом диапазоне, которая может быть использована в производстве защитных устройств, электронике и других областях техники. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002775445
Дата охранного документа: 30.06.2022
14.05.2023
№223.018.54b7

Способ интраоперационной фотодинамической терапии в комбинированном лечении местно-распространенных сарком мягких тканей

Изобретение относиться к медицине, а именно к способу интраоперационной фотодинамической терапии в комбинированном лечении местно-распространенных сарком мягких тканей. Способ включает введение пациенту за 2-3 часа до операции фотосенcибилизатора хлорин Е6 в водорастворимой лекарственной форме...
Тип: Изобретение
Номер охранного документа: 0002737704
Дата охранного документа: 02.12.2020
14.05.2023
№223.018.5551

Способ низкоинтенсивного лазерного излучения при проведении фотодинамической терапии с фотосенсибилизатором фоторан е6 перевивной соединительнотканной опухоли саркома м-1 крыс, положительной по мутантному гену р53

Изобретение относится к экспериментальной медицине, а именно к способу низкоинтенсивного лазерного излучения при проведении фотодинамической терапии с фотосенсибилизатором фоторан Е перевивной соединительнотканной опухоли саркома М-1 крыс, положительной по мутантному гену . Способ включает...
Тип: Изобретение
Номер охранного документа: 0002736261
Дата охранного документа: 12.11.2020
21.05.2023
№223.018.6984

Способ получения антибактериальных металлических фильтров из сферического порошка коррозионно-стойкой стали с серебром

Изобретение относится к области металлургии. Способ получения антибактериальных металлических фильтров включает выплавку слитка коррозионно-стойкой стали 03Х17Н10М2 с добавлением 0,2 мас.% серебра, гомогенизационный отжиг слитков, первичную деформацию литых заготовок, ротационную ковку,...
Тип: Изобретение
Номер охранного документа: 0002794905
Дата охранного документа: 25.04.2023
01.06.2023
№223.018.750c

Устройство для получения металлического порошка

Устройство относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, несколько устройств для подачи пруткового материала в плазменный...
Тип: Изобретение
Номер охранного документа: 0002749403
Дата охранного документа: 09.06.2021
16.06.2023
№223.018.7b57

Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка

Изобретение относится к металлургии, в частности к способам изготовления проволоки TiNbTa из биосовместимого сплава для производства сферического порошка. Способ получения проволоки из сплава титан-ниобий-тантал для производства сферического порошка включает выплавку слитков сплава из исходных...
Тип: Изобретение
Номер охранного документа: 0002751065
Дата охранного документа: 07.07.2021
+ добавить свой РИД