×
25.08.2017
217.015.d073

Результат интеллектуальной деятельности: Способ получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения стабилизированных частиц йодида серебра. Способ включает приготовление первого раствора, представляющего собой раствор йодида калия с концентрацией 0,216-3,6 ммоль/л, приготовление второго раствора, образованного из водного раствора нитрата серебра с концентрацией 0,36-6,0 ммоль/л и из раствора полиэлектролитного стабилизатора с концентрацией 1,0-10,0 ммоль/л, смешение обоих растворов при нормальных условиях путем приливания первого раствора ко второму раствору с образованием стабилизированных частиц йодида серебра, имеющих средний размер 1,3-1,9 нм. Заявленный способ обеспечивает получение наномерных частиц йодида серебра с узким распределением по размерам, а также упрощение способа их получения. Cтабилизированные частицы йодида серебра можно применять в качестве каталитических систем в процессах деструкции органических веществ или антимикробных растворов. 2 ил., 4 пр.

Изобретение относится к способу получения стабилизированных частиц йодида серебра наноразмера в водных растворах, применяемых в частности в качестве каталитических систем в процессах деструкции органических веществ или антимикробных растворов.

Известен метод синтеза частиц йодида серебра с использованием полимерного стабилизатора - поливинилпиралидона (Concaving Agl sub-microparticles for enhanced photocatalysis / Changhua An [et al.] // Nano Energy. - 2014. - V. 9. - P. 204-211). Синтез частиц йодида серебра основан на смешении двух растворов, содержащих исходные компоненты. Первый раствор готовят смешением абсолютного этилового спирта с этилендиамином, далее добавляют в виде порошка ацетат серебра (АС) и гранулы поливинилпиролидона (ПВП). Перемешивают смесь до полного растворения АС и ПВП и добавляют спиртовой раствор йодида калия со скоростью 1 мл/мин с помощью шприца. Получившийся продукт центрифугируют, отбирают осадок и промывают его дистиллированной водой.

К недостаткам метода можно отнести многокомпонентность, а значит, необходимость четкого контролирования соотношения большого числа реагентов; сложность исполнения, связанная с большим количеством операций, несчитая потерь конечного продукта в процессе его выделения; получение частицы йодида серебра имеющих минимальный средний диаметр около 350 нм.

Наиболее близким аналогом является способ получения стабилизированных солей металлов (Патент RU 2436594, A61L 12/08, A61L 27/54, A01N 25/12, A01N 59/16, А01Р 1/00, 20.12.2011), включающий получение первого раствора, содержащего предшественник соли и получение второго раствора, содержащего комплекс, который образован из реагента - металла и диспергирующего реагента (водный раствор полимера) в эффективном количестве, обеспечивающем стабилизацию размера частиц. Затем проводится добавление второго раствора к первому раствору со скоростью, достаточной для сохранения прозрачности раствора в течение всего процесса добавления, с получением результирующего раствора, содержащего стабилизированные частицы соли металла со средним размером частиц менее чем 200 нм. Полученный раствор высушивают с получением антимикробного порошка соли металла. В частном случае осуществления изобретения предшественник соли может представлять собой йодид натрия (NaJ), комплекс может быть образован из нитрата серебра (AgNO3) и поливинилпирролидона (ПВП), а образующийся антимикробный порошок представляет собой йодид серебра (AgJ).

В данном методе необходимо использовать концентрированные растворы полимеров, применяемых в качестве диспергирующих агентов. Так, например использование 1 об. % ПВП приводит к образованию частиц йодида серебра со средним размером 270 нм, а при использовании 35 об. % ПВП приводит к образованию 20 нм частиц. Однако, чем больше концентрация полимера, тем выше вязкость раствора диспергирующего агента, что препятствует равномерному смешению реагентов. Кроме этого,необходим контроль скорости смешения реагентов с целью получения прозрачных растворов. Так при скорости добавления второго раствора к первому 20 мл/с чаще всего получаются мутные растворы. В свою очередь, уменьшение скорости добавления приводит к возрастанию времени приготовления итоговой композиции.

Задачей изобретения является получение стабилизированных частиц йодида серебра размера наноуровня и с узким распределением по размерам.

Техническим результатом являются наномерные частицы йодида серебра с узким распределением по размерам, а также упрощение способа их получения.

Технический результат достигается в способе получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах, включающем приготовление первого раствора - раствора йодида щелочного металла, приготовление второго раствора, образованного из водного раствора нитрата серебра и водного раствора полиэлектролитного стабилизатора, смешение обоих растворов при нормальных условиях с образованием результирующего раствора, содержащего стабилизированные частицы йодида серебра, при этом полиэлектролитный стабилизатор представляет собой натриевую соль полиакриловой кислоты или полиэтиленимин, йодид щелочного металла представляет собой йодид калия, первый раствор готовят из йодида калия с концентрацией 0,216-3,6 ммоль/л, второй раствор готовят из раствора нитрата серебра с концентрацией 0,36-6,0 ммоль/л и из раствора полиэлектролитного стабилизатора с концентрацией 1,0-10,0 ммоль/л, а смешение растворов ведут путем приливания первого раствора ко второму раствору, с образованием стабилизированных частиц йодида серебра, имеющих средний размер 1,3-1,9 нм.

В качестве стабилизаторов частиц йодида серебра используется водорастворимый полиэлектролит (ПЭ), например натриевая соль полиакриловой кислоты (ПАК) или иолиэтиленимин (ПЭИ).

Перед синтезом частиц необходимо приготовить прекурсор, содержащий водный раствор стабилизатора и нитрат серебра (Ag(NO)3). Использование прекурсора такого состава позволяет получать частицы йодида серебра малого размера и с узким распределением по размерам. Известно, что уменьшение размера частиц твердой фазы приводит к увеличению удельной поверхности, что способствует улучшению свойств получаемых реагентов, например увеличению каталитической активности. Получение частиц малого размера с узким распределением по размерам способствует проявлению заданных свойств у максимально возможного количества частиц, что ведет к повышению эффективности итоговой композиции, содержащей данные частицы йодида серебра.

В водных растворах полиэлектролиты способны образовывать комплексы с ионами металлов, в частности с ионами серебра, за счет своих функциональных групп. Образование комплексов будет проходить до определенного состава, после чего в растворе будет наблюдаться избыток несвязанных ионов серебра. Таким образом максимальное количество нитрата серебра, добавляемое к раствору стабилизатора будет определяться максимальным составом комплекса полиэлектролит - ионы серебра (ПЭ-Ag+). Функциональные группы большинства полиэлектролитов входят в структуру элементарного звена полиэлектролита. Поэтому количественной характеристикой для описания растворов полиэлектролитов была выбрана концентрация его функциональных групп. Размерность концентрации - моль/л.

Расчет концентрации функциональных групп производится по формуле

,

где СПЭ - концентрация полиэлектролита, равная концентрации функциональных групп, моль/л;

m - масса навески полиэлектролита, г;

М - молекулярная масса элементарного звена полиэлектролита, г/моль;

V - объем раствора полиэлектролита, л.

В изобретении используются водные растворы исходных реагентов, при смешении которых необходимо создать условия равномерного перемешивания. Ключевым параметром при определении условий смешения является вязкость растворов. Раствор нитрата серебра концентрацией 0,36-6,0 ммоль/л и раствор йодида калия концентрацией 0,216-3,6 ммоль/л, значительного вклада в общую вязкость композиции не вносят. Вязкость растворов полиэлеткролитов концентрацией 1,0-10,0 ммоль/л близка к вязкости чистого растворителя, в нашем случае к вязкости дистиллированной воды.

Таким образом, при смешении таких растворов не требуется контролирования скорости перемешивания, а равномерное распределение реагентов по объему раствора достигается за малые промежутки времени (около 10 мин). Это значительно упрощает приготовление как исходных растворов, так и их дальнейшее смешение.

Для определения среднего диаметра частиц и распределения частиц по размерам проводили исследования образцов синтезируемых частиц йодида серебра с помощью просвечивающей электронной микроскопии с использованием электронного просвечивающего микроскопа LEO912 АВ OMEGA фирмы Карл Цейс (Германия).

На фиг. 1 представлено численное распределение по размеру частиц йодида серебра, полученных с использованием натриевой соли полиакриловой кислоты как стабилизатора. На фиг. 2 представлено численное распределение по размеру частиц йодида серебра, полученных с использованием полиэтиленимина как стабилизатора.

Из представленных фиг. 1 и 2, где N - число частиц йодида серебра со средним диаметром, N0 - общее число частиц йодида серебра, D - средний диаметр частиц йодида серебра, видно, что при использовании натриевой соли полиакриловой кислоты в качестве стабилизатора получили частицы йодида серебра со средним диаметром 1,5±0,2 нм, содержание которых достигает 63% от всех присутствующих частиц, и соответственно при использовании полиэтиленимина получили частицы, средний диаметр которых 1,7±0,2 нм и их содержание достигает 66%.

Изобретение иллюстрируется следующими примерами.

Пример 1. Получение стабилизированных высоко дисперсных частиц йодида серебра с использованием в качестве стабилизатора натриевой соли полиакриловой кислоты.

В колбу с мешалкой помещают 50 мл дистиллированной воды и добавляют 0,03 г йодида калия. Перемешивание ведут в течение 10 мин при нормальных условиях. Получают первый раствор концентрацией 3,6 ммоль/л йодида калия.

Далее во вторую колбу с мешалкой помещают 50 мл дистиллированной воды и добавляют 0,036 г натриевой соли полиакриловой кислоты, затем добавляют 0,05 г нитрата серебра. Перемешивание ведут в течение 10 мин при нормальных условиях. Получают второй раствор, содержащий комплекс стабилизатора - натриевой соли полиакриловой кислоты концентрацией 10,0 ммоль/л и нитрата серебра концентрацией 6,0 ммоль/л.

Получение частиц йодида серебра осуществляют смешением первого и второго растворов путем приливания ко второму раствору первого раствора при перемешивании и продолжают перемешивать в течение 10 мин при нормальных условиях. Получают частицы йодида серебра со средним диаметром 1,5±0,2 нм.

Пример 2. Получение стабилизированных высоко дисперсных частиц йодида серебра с использованием в качестве стабилизатора полиэтиленимина.

Получение проводят аналогично примеру 1 с использованием 0,018 г йодида калия (2,16 ммоль/л), 0,022 г полиэтиленимина (10,0 ммоль/л) и 0,031 г нитрата серебра (3,6 ммоль). Получают частицы йодида серебра со средним диаметром 1,7±0,2 нм.

Пример 3. Получение стабилизированных высоко дисперсных частиц йодида серебра с использованием в качестве стабилизатора натриевой соли полиакриловой кислоты.

Получение проводят аналогично примеру 1 с использованием 0,003 г йодида калия (0,36 ммоль/л), 0,0036 г натриевой соли полиакриловой кислоты (1,0 ммоль/л) и 0,005 г нитрата серебра (0,6 ммоль). Получают частицы йодида серебра со средним диаметром 1,5±0,2 нм.

Пример 4. Получение стабилизированных высоко дисперсных частиц йодида серебра с использованием в качестве стабилизатора полиэтиленимина.

Получение проводят аналогично примеру 1 с использованием 0,0018 г йодида калия (0,216 ммоль/л), 0,0022 г полиэтиленимина (1,0 ммоль/л) и 0,0031 г нитрата серебра (0,36 ммоль). Получают частицы йодида серебра со средним диаметром 1,7±0,2 нм.

Таким образом, заявленный способ получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах является простым и обеспечивает получение частиц йодида серебра с узким распределением по размеру и со средним диаметром частиц 1,3-1,9 нм.

Способ получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах, включающий приготовление первого раствора - раствора йодида щелочного металла, приготовление второго раствора, образованного из водного раствора нитрата серебра и водного раствора полиэлектролитного стабилизатора, смешение обоих растворов при нормальных условиях с образованием результирующего раствора, содержащего стабилизированные частицы йодида серебра, отличающийся тем, что полиэлектролитный стабилизатор представляет собой натриевую соль полиакриловой кислоты или полиэтиленимин, йодид щелочного металла представляет собой йодид калия, первый раствор готовят из йодида калия с концентрацией 0,216-3,6 ммоль/л, второй раствор готовят из раствора нитрата серебра с концентрацией 0,36-6,0 ммоль/л и из раствора полиэлектролитного стабилизатора с концентрацией 1,0-10,0 ммоль/л, а смешение растворов ведут путем приливания первого раствора ко второму раствору с образованием стабилизированных частиц йодида серебра, имеющих средний размер 1,3-1,9 нм.
Способ получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах
Источник поступления информации: Роспатент

Показаны записи 91-100 из 416.
26.08.2017
№217.015.e44e

Способ получения производных n-фениладамантан-1-карбоксамида

Изобретение относится к способам синтеза амидов кислот каркасных соединений, в частности амидов адамантилкарбоновых кислот, которые не только являются интермедиатами синтеза широкого ряда веществ, проявляющих различные виды терапевтической активности, но и сами являются биологически активными...
Тип: Изобретение
Номер охранного документа: 0002626237
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e4f3

Способ частичного восстановления циклодиенов и циклотриенов

Изобретение относится к способу восстановления непредельных циклических соединений, заключающемуся во взаимодействии непредельных циклических соединений с молекулярным водородом в присутствии наночастиц никеля при нагревании. Способ характеризуется тем, что в качестве катализатора используют...
Тип: Изобретение
Номер охранного документа: 0002626455
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e727

Способ сборки подшипника качения

Изобретение относится к области машиностроения и может быть использовано в производстве подшипников качения. Способ сборки подшипника качения, который содержит концентрично расположенные кольца с выполненными на них дорожками качения, между которыми размещают тела качения без учета их...
Тип: Изобретение
Номер охранного документа: 0002627258
Дата охранного документа: 04.08.2017
29.12.2017
№217.015.f298

Теплозащитный материал

Изобретение относится к теплозащитному материалу на основе этиленпропилендиенового каучука, который может использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002637519
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f300

Способ получения композиции для маслобензиностойкого пластиката

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Осуществляют смешение поливинилхлорида, диоктилфталата, стеарата кальция, трехосновного сульфата свинца, эпоксидной смолы, добавление в смесь древесной муки,...
Тип: Изобретение
Номер охранного документа: 0002637916
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f358

Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал на основе этиленпропилендиенового каучука включает следующее соотношение компонентов, мас. ч.: каучук СКЭПТ-40 - 100,0, сера...
Тип: Изобретение
Номер охранного документа: 0002637913
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f3da

Композиция для маслобензиностойкого пластиката

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Композиция для кабельного пластиката содержит компоненты при следующем соотношении, мас.ч.: поливинилхлорид эмульсионный ЕП 6602-С 100,0; эпоксидная смола ЭД-20 10,0;...
Тип: Изобретение
Номер охранного документа: 0002637949
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f3fd

Способ получения композиции для маслобензиностойкого пластиката

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Осуществляют смешение поливинилхлорида, диоктилфталата, стеарата кальция, трехосновного сульфата свинца, эпоксидной смолы. Смешение компонентов смеси ведут при нормальных...
Тип: Изобретение
Номер охранного документа: 0002637910
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f475

Фторсодержащая полиамидная композиция с пониженной горючестью

Изобретение относится к композиционным материалам с пониженной горючестью, включающим полимерную основу и наполнитель (антипирен), и может быть использовано для производства формованных изделий. Композиция включает полиамид ПА-6 и смесь антипиренов, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002637955
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f48f

Теплозащитный материал

Изобретение относится к теплозащитному материалу на основе этиленпропилендиенового каучука, который может использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002637932
Дата охранного документа: 08.12.2017
Показаны записи 91-100 из 162.
29.12.2017
№217.015.f48f

Теплозащитный материал

Изобретение относится к теплозащитному материалу на основе этиленпропилендиенового каучука, который может использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002637932
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f4bf

Способ получения композиции для трудногорючего пластиката

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Осуществляют смешение поливинилхлорида, диоктилфталата, стеарата кальция, трехосновного сульфата свинца, эпоксидной смолы, дифенилолпропана, добавление в смесь...
Тип: Изобретение
Номер охранного документа: 0002637951
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f4f7

Композиция для маслобензиностойкого пластиката

Изобретение относится к области полимерной промышленности и может быть использовано для изготовления кабельного пластиката. Композиция для кабельного пластиката содержит компоненты при следующем соотношении, мас.ч: поливинилхлорид эмульсионный ЕП 6602-С (100,0); эпоксидная смола ЭД-20 (10,0);...
Тип: Изобретение
Номер охранного документа: 0002637950
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f635

Способ получения меланина из лузги подсолнечника

Изобретение относится к фармацевтической промышленности, а именно к способу получения меланина из лузги подсолнечника. Способ получения меланина из лузги подсолнечника, включающий промывание водой неизмельченной лузги подсолнечника, сушку, измельчение, экстрагирование раствором гидроксида...
Тип: Изобретение
Номер охранного документа: 0002637646
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f9f3

Способ автоматического ограничения скорости автомобиля

Изобретение относится к технике автоматического управления ограничением скорости движения транспортных средств. При осуществлении способа автоматического ограничения скорости автомобиля задают допускаемую скорость движения. Сравнивают с допускаемой скоростью движения фактическую скорость...
Тип: Изобретение
Номер охранного документа: 0002639934
Дата охранного документа: 25.12.2017
19.01.2018
№218.016.00a2

Способ получения органомодифицированного монтмориллонита с полифторалкильными группами

Изобретение относится к способу получения модифицированного монтмориллонита. Способ получения органомодифицированного монтмориллонита с полифторалкильными группами включает обработку природного монтмориллонита смесью 1,1,3-тригидроперфторпропанола-1, 1,1,5-тригидроперфторпентанола-1 и...
Тип: Изобретение
Номер охранного документа: 0002629300
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0137

Способ получения вторичных аминов

Изобретение относится к улучшенному способу получения вторичных аминов, в частности к способу получения вторичных насыщенных аминов, восстановительным аминированием нитрилов при нагревании. Полученные амины находят применение как полупродукты в органическом синтезе и для получения...
Тип: Изобретение
Номер охранного документа: 0002629771
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.014d

Способ получения фотополимеризующейся композиции

Настоящее изобретение относится к способу изготовления полимер-мономерной композиции, которая может использоваться для получения неокрашенных оптически прозрачных материалов с пониженной горючестью и высокой адгезией к силикатным стеклам. Описан способ получения фотополимеризующейся...
Тип: Изобретение
Номер охранного документа: 0002629769
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.01b2

Чувствительный элемент

Изобретение относится к измерительной технике, в частности может быть использовано для надежного и точного измерения усилий в широком диапазоне, в том числе и малой величины. Заявленный чувствительный элемент содержит упругий стержень с нарезкой глубиной 1,5-2 диаметра тензорезисторной...
Тип: Изобретение
Номер охранного документа: 0002629918
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.01d8

Способ переработки нутового сырья

Изобретение относится к пищевой промышленности и может быть использовано в производстве кондитерских изделий, напитков, а также при составлении фаршевых систем, в производстве полуфабрикатов и продуктов из мяса. Способ предусматривает замачивание при нагревании семян нута в водно-солевом...
Тип: Изобретение
Номер охранного документа: 0002629995
Дата охранного документа: 05.09.2017
+ добавить свой РИД