×
25.08.2017
217.015.cee9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД

Вид РИД

Изобретение

Аннотация: Изобретение относится к области метеорологии и касается способа определения прозрачности атмосферы по фотометрии звезд. Способ включает в себя определение величины относительной мощности излучения двух звезд. При измерениях используют прибор с зарядовой связью. Величину относительной мощности излучения определяют рассчитывая яркость в уровнях серого полученного изображения путем суммирования яркости каждого ее отдельного пикселя за вычетом фонового сигнала неба. Одновременно с этим измеряют углы между горизонтом и звездами А и В, по которым вычисляют атмосферную массу к каждой из двух звезд. Коэффициент прозрачности атмосферы определяют по выражению: где I, I - известные заатмосферные мощности звезд А и В; S, S - рассчитанные в эксперименте относительные мощности излучения звезд; М, М – атмосферные массы к звездам А и В. Технический результат заключается в упрощении способа, сокращении времени измерений и обеспечении возможности проведения измерений в любое время суток. 2 ил.

Изобретение относится к метеорологии, фотометрии и спектрофотометрии звезд и может быть использовано для получения информации о прозрачности атмосферы по звездам на вертикальных и наклонных трассах.

Из существующего уровня техники известно несколько различных способов определения прозрачности атмосферы по звездам, физическая сущность которых основана на увеличении поглощения атмосферы с увеличением атмосферной массы на трассе наблюдения звезд. К подобным способам относятся: метод Бугера, метод пары звезд, метод Никонова (метод контрольных звезд), метод Сарычева (А.В. Миронов. Основы астрофотометрии. Практические основы фотометрии и спектрофотометрии звезд.//М. Физматлит, ISBN 978-5-9221-0935-2, 2008 г.). Рассмотрим каждый из названных методов в отдельности.

Способ определения прозрачности атмосферы по методу Бугера (стр. 224) основан на наблюдении в монохроматическом свете с длиной волны λ в два момента времени Τ1 и Т2 при воздушных массах, равных соответственно М(z1) и M(z2). Разность наблюденных звездных величин, отнесенная к разности соответствующих воздушных масс, даст бугеровский коэффициент атмосферной экстинкции (прозрачность в зенитном направлении).

Способ определения прозрачности атмосферы по методу Никонова (стр. 228) заключается в том, что выбирают и многократно измеряют одну (специально выбранную стандартную) звезду, которую называют экстинкционной, а в промежутках между ее наблюдениями - измеряют программные (контрольные) звезды.

Метод Сарычева (стр. 231) заключается в том, что за короткий промежуток времени изменение прозрачности представляют прямолинейным отрезком. Таким коротким промежутком времени считается интервал, в котором произведено три последовательных измерений различных звезд. Принимается, что за этот промежуток времени можно считать коэффициент экстинкции (прозрачности) линейно изменяющимся со временем.

Наиболее близким аналогом из них является способ определения прозрачности атмосферы по парам звезд (стр. 227), заключающийся в том, что осуществляют последовательное наведение телескопа на две звезды, находящиеся на различных зенитных расстояниях с определением их уровня относительной мощности излучения путем регистрации потока света в виде количества фотоэлектронов, приходящего через атмосферу. При регистрации используют фотоэлектронный умножитель (ФЭУ). Полученные при этом данные используют для определения коэффициента прозрачности атмосферы (или - прозрачность в зенитном направлении) из соотношения внеатмосферных величин блеска звезд к их атмосферным массам.

Все приведенные выше способы имеют следующие недостатки:

- не работают в дневное время суток, т.к. в дневных условиях яркий фон атмосферы приводит к насыщению ФЭУ,

- не работают в красной спектральной полосе,

- использование при регистрации ФЭУ не позволяет выделить изображение звезды на ярком фоне дневного неба,

- требуется достаточно большое время наблюдения и специальное местоположение с хорошим астроклиматом и вдали от населенных пунктов,

- сложность в эксплуатации, требующей использование узкоспециализированного сложного оборудования, громоздкого астрономического телескопа и участия нескольких высококвалифицированных специалистов.

Технический результат изобретения заключается в расширении функциональных возможностей за счет определения прозрачности атмосферы в любом месте, в любой спектральной полосе и в любое время суток за короткое время наблюдения и обработки. Кроме того, одновременно с этим обеспечивается простота в эксплуатации, компактность и мобильность, позволяющие осуществить оперативную перевозку и монтаж при изменении места испытаний.

Указанный технический результат достигается тем, что в способе определения прозрачности атмосферы по фотометрии звезд, заключающемся в том, что осуществляют последовательное наведение телескопа, по меньшей мере, на две звезды, находящиеся на различных зенитных расстояниях, определяют их величину относительной мощности излучения путем измерения потока света, приходящего от звезд через атмосферу, и полученные данные используют для определения коэффициента прозрачности атмосферы, новым является то, что при измерении используют прибор с зарядовой связью, на матрице которого получают изображение звезды, а величину относительной мощности излучения определяют рассчитывая яркость в уровнях серого полученного изображения путем суммирования яркости каждого ее отдельного пикселя за вычетом фонового сигнала неба, одновременно с этим измеряют углы между горизонтом и звездами А и В, по которым вычисляют атмосферную массу к звезде и к звезде , а коэффициент прозрачности атмосферы Т0 рассчитывают по следующему выражению:

где Ia, Iв - известные заатмосферные мощности звезд А и В;

Sa, Sв - рассчитанные в эксперименте относительные мощности излучения звезд.

Использование при измерении прибора с зарядовой связью, на матрице которого получают изображение звезды, позволяет выделить изображение звезды на ярком фоне дневного неба за короткое время проведения измерений, что способствует реализации всесуточного контроля прозрачности атмосферы в любом месте и регистрации в красном спектральном диапазоне, а также обеспечивает простоту в эксплуатации, мобильность, и компактность.

Определение величины относительной мощности излучения по расчету яркости в уровнях серого полученного изображения путем суммирования яркости каждого ее отдельного пикселя за вычетом фонового сигнала неба позволяет количественно определить относительную мощность излучения звезды для дальнейшего расчета коэффициента прозрачности, что также расширяет функциональные возможности устройства и обеспечивает простоту в эксплуатации.

Измерение углов между горизонтом и звездами А и В, по которым вычисляют атмосферную массу к звезде и к звезде , позволяет уменьшить время наведения регистрирующей аппаратуры на звезды и ускорить получение результата.

Определение коэффициента прозрачности атмосферы Т0 по выражению: где Ia, IB - известные заатмосферные мощности звезд; Sа, SB - рассчитанные в эксперименте относительные мощности излучения звезд, позволяет упростить расчеты и быстро получить текущую информацию по состоянию прозрачности атмосферы в различных областях небесной сферы, что также влияет на расширение функциональных возможностей устройства и обеспечение простоты в эксплуатации.

Реализация предлагаемого способа определения прозрачности атмосферы по фотометрии звезд схематично представлена на фиг. 1 и фиг. 2. На фиг. 1 приведена схема регистрации звезд. На фиг. 2 - схема расчета углов. Позициями на фигурах обозначены: 1 - телескоп; 2 - альт-азимутальная монтировка; 3 - штатив; 4 - прибор с зарядовой связью (далее - ПЗС-камера); 5 - персональный компьютер для записи изображений; 6 -персональный компьютер для управления монтировкой телескопа; 7 - угловая высота звезды А; 8 - угловая высота звезды В, 9 - точка наблюдения, 10 - зенит; А, В - звезды.

Схема включает в себя телескоп 1 с фокусом 1,325 м и диаметром 102 мм. Альт-азимутальная монтировка 2? установленная на штативе 3, выполнена с возможностью ручного и компьютерного управления 6, что позволяет выбирать и устанавливать любую угловую высоту точки наблюдения 9. ПЗС-камера 4 фирмы Watec-Wat-100 N с кремниевой матрицей SONY размером 795(гориз.)×596(вертик.) пикселей и размером одиночного пикселя 8.6 мкм×8,3 мкм размещена на выходе телескопа 1. На входе ПЗС-камеры 4 установлен светофильтр КС-19, выделяющий спектральный участок от λ=700 нм (коротковолновая граница красного фильтра КС-19) до λ=1000 нм (длинноволновая граница спектральной чувствительности кремниевой матрицы), а выход ПЗС-камеры - подключен к персональному компьютеру для записи изображений 5.

Работа способа осуществляется следующим образом. Для корректного наведения телескопа 1 с помощью персонального компьютера 6 необходимо сначала осуществить наведение и фокусировку по Полярной звезде, которая находится постоянно в одном угловом положении на небесной сфере. После наведения на звезду А телескоп 1 направляет поток света, приходящий от нее через атмосферу, и строит изображение звезды на матрице ПЗС-камеры 4. Затем с помощью персонального компьютера для записи изображений 5 осуществляют запись и вычисляют величину относительной мощности излучения звезды, которую определяют рассчитывая яркость в уровнях серого (далее у.с.) путем суммирования яркости каждого ее отдельного пикселя за вычетом фонового сигнала неба.

Далее после наведения на звезду В аналогичным образом находим величину относительной мощности излучения, приходящего от звезды В.

Одновременно с этим измеряют углы между горизонтом и угловыми высотами звезд А и В (7, 8), по которым вычисляют атмосферную массу к звезде , и к звезде . Полученные данные используют для определения коэффициента прозрачности атмосферы в зенит (10) Т0, который рассчитывают по следующему выражению: где Ia, IB - известные величины заатмосферной мощности звезд А и В; Sa, SB - рассчитанные в эксперименте относительные мощности излучения звезд.

На предприятии проведены исследования и эксперименты по представленному способу определения прозрачности атмосферы по фотометрии звезд с достижением вышеуказанного технического результата. В ходе измерений в спектральном диапазоне от λ=700 нм до λ=1000 нм было определено значение коэффициента прозрачности атмосферы в зенитном направлении: Т0, которое составило:

- в ночных условиях - Т0=95% (5 июня 2015 г. ) - по 5 парам звезд,

- в дневных условиях - Т0=78% (8 июня 2015 г. ) - по 4 парам звезд.

Таким образом, заявляемое изобретение может быть реализовано в любом месте, в любой спектральной полосе и в любое время суток (в том числе и в дневных условиях) за достаточно небольшое время наблюдений и обработки. Кроме того, одновременно с этим обеспечивается простота в эксплуатации, компактность и мобильность, позволяющие осуществить оперативную перевозку и монтаж при изменении места испытаний.


СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ ПО ФОТОМЕТРИИ ЗВЕЗД
Источник поступления информации: Роспатент

Показаны записи 21-30 из 802.
20.07.2014
№216.012.df3e

Блок детектирования альфа-частиц

Изобретение относится к области ядерного приборостроения. Блок детектирования альфа-частиц содержит камеру с впускным и выпускным отверстиями для воздушного потока, на пути которого в корпусе камеры расположены друг над другом фильтр и детектор альфа-частиц, задержанных фильтром, и соединенный...
Тип: Изобретение
Номер охранного документа: 0002522936
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfa3

Стенд для испытания образцов из хрупких и малопрочных материалов

Изобретение относится к испытательной технике, а именно к стендам для определения предела прочности хрупких и малопрочных материалов. Стенд содержит основание, опоры, нагружающее устройство, снабженное силоизмерителем, и образец в виде диска, размещенный между опорами через прокладки из...
Тип: Изобретение
Номер охранного документа: 0002523037
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e125

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (твэлов) ядерных реакторов. Имитатор твэла содержит оболочку, в которой размещен столб таблеток натурного топлива с центральным отверстием, и расположенный с...
Тип: Изобретение
Номер охранного документа: 0002523423
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e557

Контейнер для взрывоопасных грузов

Контейнер для взрывоопасных грузов относится к контейнерным перевозкам, в частности к специальным контейнерам, предназначенным для безопасной перевозки, хранения и технического обслуживания взрывоопасных грузов в регионах с повышенной социальной напряженностью и диверсионной опасностью, а также...
Тип: Изобретение
Номер охранного документа: 0002524501
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.ec68

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов). Устройство содержит оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула...
Тип: Изобретение
Номер охранного документа: 0002526328
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f2d3

Электродетонатор

Электродетонатор относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования при проведении взрывных работ. Электродетонатор содержит гильзу с размещенным в ней зарядом ВВ,...
Тип: Изобретение
Номер охранного документа: 0002527985
Дата охранного документа: 10.09.2014
10.11.2014
№216.013.03f6

Переход низкочастотный

Изобретение относится к электротехнике и может быть использовано для обеспечения герметичного ввода электрических проводников через защитные стенки в зону воздействия высокого давления, ударных нагрузок, содержащую высокотоксичные продукты. Переход низкочастотный в загрязненную зону через...
Тип: Изобретение
Номер охранного документа: 0002532412
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.092b

Способ и устройство для измерения углового ускорения контролируемого объекта

Изобретение относится к области приборостроения и предназначено для измерения углового ускорения. Для измерения углового ускорения объекта производят измерение длительности интервалов времени между фронтами всех импульсов импульсным датчиком углового положения, определяют среднюю скорость на...
Тип: Изобретение
Номер охранного документа: 0002533748
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.10f5

Корпус подводного аппарата

Изобретение относится к области судостроения, в частности к конструкции корпусов аппаратов, работающих на устойчивость при действии гидростатического давления и сжимающей силы. Корпус подводного аппарата содержит металлический каркас и охватывающую его эластичную оболочку, выполненную из...
Тип: Изобретение
Номер охранного документа: 0002535764
Дата охранного документа: 20.12.2014
Показаны записи 21-30 из 291.
27.07.2014
№216.012.e557

Контейнер для взрывоопасных грузов

Контейнер для взрывоопасных грузов относится к контейнерным перевозкам, в частности к специальным контейнерам, предназначенным для безопасной перевозки, хранения и технического обслуживания взрывоопасных грузов в регионах с повышенной социальной напряженностью и диверсионной опасностью, а также...
Тип: Изобретение
Номер охранного документа: 0002524501
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.ec68

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов). Устройство содержит оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула...
Тип: Изобретение
Номер охранного документа: 0002526328
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f2d3

Электродетонатор

Электродетонатор относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования при проведении взрывных работ. Электродетонатор содержит гильзу с размещенным в ней зарядом ВВ,...
Тип: Изобретение
Номер охранного документа: 0002527985
Дата охранного документа: 10.09.2014
10.11.2014
№216.013.03f6

Переход низкочастотный

Изобретение относится к электротехнике и может быть использовано для обеспечения герметичного ввода электрических проводников через защитные стенки в зону воздействия высокого давления, ударных нагрузок, содержащую высокотоксичные продукты. Переход низкочастотный в загрязненную зону через...
Тип: Изобретение
Номер охранного документа: 0002532412
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.092b

Способ и устройство для измерения углового ускорения контролируемого объекта

Изобретение относится к области приборостроения и предназначено для измерения углового ускорения. Для измерения углового ускорения объекта производят измерение длительности интервалов времени между фронтами всех импульсов импульсным датчиком углового положения, определяют среднюю скорость на...
Тип: Изобретение
Номер охранного документа: 0002533748
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.10f5

Корпус подводного аппарата

Изобретение относится к области судостроения, в частности к конструкции корпусов аппаратов, работающих на устойчивость при действии гидростатического давления и сжимающей силы. Корпус подводного аппарата содержит металлический каркас и охватывающую его эластичную оболочку, выполненную из...
Тип: Изобретение
Номер охранного документа: 0002535764
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.232f

Способ определения механических свойств хрупких материалов при растяжении

Изобретение относится к механическим испытаниям на растяжение хрупких образцов из композиционных материалов и предназначено для авиастроения, судостроения, машиностроения, атомной энергетики. Сущность изобретения: накладки одинаковых с образцом размеров и формы, выполненные из материала,...
Тип: Изобретение
Номер охранного документа: 0002540460
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.249e

Двухдиапазонная микрополосковая антенна круговой поляризации

Изобретение относится к антенно-фидерным устройствам, в частности к бортовым антеннам спутниковой навигации. Технический результат изобретения заключается в упрощении настройки при уменьшении габаритов двухдиапазонной микрополосковой антенны круговой поляризации. Антенна содержит металлический...
Тип: Изобретение
Номер охранного документа: 0002540827
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a7f

Инерционный включатель

Инерционный включатель содержит корпус, инерционное тело на направляющей оси, контакты, а также неподвижную направляющую и подвижный поворотный привод контактов, расположенные коаксиально с инерционным телом и имеющие на боковых стенках пазы. Выключатель снабжен внешней втулкой, коаксиально...
Тип: Изобретение
Номер охранного документа: 0002542336
Дата охранного документа: 20.02.2015
+ добавить свой РИД