×
25.08.2017
217.015.ced9

Результат интеллектуальной деятельности: Вихревой классификатор порошковых материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к аппаратам для классификации дисперсных материалов и может быть использовано в строительной, химической и других отраслях промышленности. Вихревой классификатор порошковых материалов включает цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого материала в виде кольцевых щелей, камеру с каналами вывода крупной фракции, каждый из каналов вывода крупной фракции выполнен в виде расширяющегося сопла из биметаллического материала. На внутренней поверхности расширяющегося сопла выполнены криволинейные канавки, продольно расположенные от входного до выходного отверстий. Один из клапанов вывода классифицируемого материала в виде кольцевой щели и один из каналов вывода крупной фракции в виде расширяющегося сопла из биметалла с продольно расположенными канавками на внутренней поверхности соединены с термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для горячего потока сжатого воздуха, транспортирующего классифицируемый материал, и проходным каналом для холодного потока сжатого воздуха, транспортирующего крупные фракции, а также с комплектом дифференциальных термопар, «горячие» концы которых расположены в проходном канале для горячего потока сжатого воздуха, а их «холодные» концы расположены в проходном канале для холодного потока сжатого воздуха. Цилиндрическая прямоточная вихревая камера с наружной поверхности покрыта тонковолокнистым базальтовым материалом, выполненным в виде продольно вытянутых пучков, расположенных по длине цилиндрической камеры. «Горячие» и «холодные» концы дифференциальных термопар, расположенные, соответственно, на внутренних поверхностях проходного канала для горячего и проходного канала для холодного сжатого воздуха, покрыты диэлектриком в виде стеклоподобной нанообразной пленки из оксида тантала. Технический результат - повышение эффективности работы классификатора, а также поддержание качества готового продукта при длительной эксплуатации классификатора. 4 ил.

Изобретение относится к аппаратам для классификации дисперсных материалов и может быть использовано в строительной, химической и других отраслях промышленности.

Известен вихревой классификатор порошковых материалов (см. патент РФ 2478011 МПК В07В 04/08, В04С 3/06, 27.03.2003. Бюл. № 9, включающий цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого материала в виде кольцевых щелей, закручивающий аппарат с каналами ввода порошкового материала и каналами вывода крупной фракции, завихритель, клапаны и блок управления с датчиками температуры холодного и горячего потоков, каждый из каналов вывода крупной фракции выполнен в виде расширяющегося сопла из биметаллического материала, при этом на внутренней поверхности расширяющегося сопла выполнены криволинейные канавки, продольно расположенные от входного до выходного отверстий, при этом один из клапанов вывода классифицируемого материла в виде кольцевой щели и один из каналов вывода крупной фракции в виде расширяющегося сопла из биметалла с продольно расположенными канавками на внутренней поверхности соединены с термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для горячего потока сжатого воздуха, транспортирующего классифицируемый материал, и проходным каналом для холодного потока сжатого воздуха, транспортирующего крупные фракции, а также с комплектом дифференциальных термопар, «горячие» концы которых расположены в проходном канале для горячего потока сжатого воздуха, а их «холодные» концы в проходном канале для холодного потока сжатого воздуха.

Недостатком данного устройства является снижение качества классификации порошкового материала по длине цилиндрической прямоточной вихревой камеры из-за нарушения транспортируемого порошкового материала термодинамически расслаиваемым сжатым воздухом в связи с потерями тепла периферийным горячим потоком в окружающую среду наружной поверхностью цилиндрической камеры.

Известен вихревой классификатор порошковых материалов (см. патент РФ на полезную модель № 143617 МПК В07В 7/08, опубл. 27.07.2014. Бюл. № 21), включающий цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого материала в виде кольцевых щелей, закручивающий аппарат с каналами ввода порошкового материала и каналами вывода крупной фракции, завихритель, клапаны и блок управления с датчиками температуры холодного и горячего потоков цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого материала, в виде кольцевых щелей, камеру с каналами вывода крупной фракции, каждый из каналов вывода крупной фракции выполнен в виде расширяющегося сопла из биметаллического материала, при этом на внутренней поверхности расширяющегося сопла выполнены криволинейные канавки, продольно расположенные от входного до выходного отверстий, при этом один из клапанов вывода классифицируемого материала в виде кольцевой щели и один из каналов вывода крупной фракции в виде расширяющегося сопла из биметалла с продольно расположенными канавками на внутренней поверхности соединены с термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для горячего потока сжатого воздуха, транспортирующего классифицируемый материал, и проходным каналом для холодного потока сжатого воздуха, транспортирующего крупные фракции, а также с комплектом дифференциальных термопар, «горячие» концы которых расположены в проходном канале для горячего потока сжатого воздуха, а их «холодные» концы расположены в проходном канале для холодного потока сжатого воздуха, причем цилиндрическая прямоточная вихревая камера с наружной поверхности покрыта тонковолокнистым базальтовым материалом, выполненным в виде продольно вытянутых пучков, расположенных по длине цилиндрической камеры.

Недостатком является снижение качества получения классифицированного порошкового материала при длительной эксплуатации из-за уменьшения энергетического потенциала, обеспечивающего надежную работу блока управления, вследствие падения термоЭДС посредством рассеивания электрической энергии по каплеобразной атмосферной влаге, налипающей с движущегося потока воздуха на «горячие» и «холодные» концы дифференциальных термопар, закрепленных на внутренних поверхностях проходных каналов корпуса электрического терморегулятора.

Технической задачей предлагаемого изобретения является поддержание качества порошкового материала в процессе классификации за счет обеспечения надежной работы термоэлектрического генератора при длительной эксплуатации в условиях насыщения потока сжатого воздуха загрязнениями и особенно каплеобразной атмосферной и конденсирующейся влагой, которая, налипая на внутренние поверхности каналов корпуса и, соответственно, «горячие» и «холодные» концы дифференциальных термопар, снижает термоЭДС, путем покрытия их диэлектриком в виде стеклоподобной нанообразной пленки из оксида тантала.

Технический результат по поддержанию при длительной эксплуатации заданного качества готового продукта достигается тем, что вихревой классификатор порошковых материалов включает цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого материала в виде кольцевых щелей, камеру с каналами вывода крупной фракции, каждый из каналов вывода крупной фракции выполнен в виде расширяющегося сопла из биметаллического материала, при этом на внутренней поверхности расширяющегося сопла выполнены криволинейные канавки, продольно расположенные от входного до выходного отверстий, при этом один из клапанов вывода классифицируемого материала в виде кольцевой щели и один из каналов вывода крупной фракции в виде расширяющегося сопла из биметалла с продольно расположенными канавками на внутренней поверхности соединены с термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для горячего потока сжатого воздуха, транспортирующего классифицируемый материал, и проходным каналом для холодного потока сжатого воздуха, транспортирующего крупные фракции, а также с комплектом дифференциальных термопар, «горячие» концы которых расположены в проходном канале для горячего потока сжатого воздуха, а их «холодные» концы расположены в проходном канале для холодного потока сжатого воздуха, причем цилиндрическая прямоточная вихревая камера с наружной поверхности покрыта тонковолокнистым базальтовым материалом, выполненным в виде продольно вытянутых пучков, расположенных по длине цилиндрической камеры, при этом «горячие» и «холодные» концы дифференциальных термопар, расположенные, соответственно, на внутренних поверхностях проходного канала для горячего и проходного канала для холодного сжатого воздуха покрыты диэлектриком в виде стеклоподобной нанообразной пленки из оксида тантала.

На фиг.1 представлена схема вихревого классификатора порошковых материалов, покрытого тонковолокнистым базальтовым материалом, на фиг.2 – разрез цилиндрической прямоточной вихревой камеры с каналами вывода, на фиг. 3 – развертка расширяющегося сопла с криволинейными канавками на внутренней боковой поверхности, на фиг.4 – внутренние поверхности проходных каналов корпуса термоэлектрического генератора с «горячими» и «холодными» концами дифференциальных термопар, покрытые диэлектриком в виде стеклоподобной нанообразной пленки из оксида тантала.

Вихревой классификатор порошковых материалов содержит цилиндрическую прямоточную вихревую камеру 1 с каналами вывода 2 классифицируемого материала в виде кольцевых щелей, закручивающегося аппарата 3 с каналами вывода 4 порошкового материала и каналами вывода 5 крупной фракции, клапаны управления 6 и 7, установленные соответственно на каналах 8 и 9 ввода закрученного воздушного потока и ввода незакрученного воздушного потока, завихритель 10, соединенный с клапанами управления 6, датчики температуры 11 горячего потока, укрепленные на выходе из каналов вывода 2 классифицируемого материала, и датчики температуры 11 и 12 холодного потока, укрепленные на выходе каналов вывода 5 крупной фракции, при этом датчики температуры 11 и 12 через блок управления 13 электрически связаны с клапанами управления 6 и 7. Каналы вывода 5 крупной фракции выполнены каждый в виде расширяющегося сопла из биметаллического материала, на внутренней поверхности которого выполнены криволинейные канавки 14, продольно расположенные вдоль его входного 15 до выходного 16 отверстия канала 5 вывода крупной фракции.

Канал вывода 2 классифицируемого материала в виде кольцевой щели соединен с входом 17 проходного канала 18 для горячего потока сжатого воздуха корпуса 19 термоэлектрического генератора 20 через фильтр 21 со сборников загрязнений 22 для последующего выброса очищенного горячего потока сжатого воздуха в окружающую среду через выход 23. Канал вывода 5 крупной фракции соединен со входом 24 проходного канала 25 для холодного потока сжатого воздуха корпуса 19 термоэлектрического генератора 20 через фильтр 26 со сборником загрязнений 27 для последующего выброса очищенного холодного потока сжатого воздуха в окружающую среду через выход 28.

В проходном канале 18 для горячего потока сжатого воздуха расположены «горячие» концы 29 комплекта дифференциальных термопар 30, а в проходном канале 25 для холодного потока сжатого воздуха расположены «холодные» концы 31 комплекта дифференциальных термопар 30. Цилиндрическая прямоточная вихревая камера 1 с наружной поверхности 31 покрыта тонковолокнистым базальтовым материалом 32, выполненным в виде продольно вытянутых пучков 33, расположенных по длине цилиндрической камеры 1.

«Горячие» 29 и «холодные» 31 концы комплекта дифференциальных термопар 30, расположенные, соответственно, на внутренних поверхностях 34 и 35 проходного канала 18 для горячего потока сжатого воздуха и проходного канала 25 для холодного потока сжатого воздуха покрыты диэлектриком 36 и 37 в виде стеклоподобной нанообразной пленки из оксида тантала.

Вихревой классификатор порошковых материалов работает следующим образом.

По мере перемещения как в проходном канале 18 для горячего потока сжатого воздуха корпуса 19 термоэлектрического генератора 20, так и в проходном канале 25 для холодного потока сжатого воздуха, воздушно-паровой смеси, соответственно очищенного от загрязнений в фильтрах 21 и 26, наблюдается дополнительное охлаждение движущихся потоков из-за воздействия окружающей среды на корпус 18. В результате парообразная влага конденсируется на внутренние поверхности 34 и 35 каналов 18 и 25, а также, соответственно, на «горячие» 29 и «холодные» 31 концы дифференциальных термопар, образуя «пятна» жидкости, которая являясь проводником, рассеивает электрический потенциал по корпусу 18, уменьшая тем самым вырабатываемую термоЭДС термогенератора 20.

Для обеспечения нормированных значений термоЭДС термогенератора 20 «горячий»29 и «холодный» 31 концы дифференциальных термопар 30, а также внутренние поверхности 34 и 35 каналов 18 и 25 покрыты диэлектриком 36 и 37 из оксида тантала ( см., например, Химическая энциклопедия. – т.4 –М.: Советская энциклопедия, 1995, 496 с., ил.)

При этом для устранения налипания каплеобразных мелкодисперсных конденсирующихся капелек влаги, которые укрупняясь и коагулируясь, образуют «пятна» жидкости, приводящие к коррозии и разрушению как внутренних поврехностей 34 и 35, так и «горячих»29 и «холодных» 31 концов дифференциальных термопар 30, приводит к повышению надежности работы термоэлектрического генератора.

Оксид тантала наносят в виде стеклообразующей наноподобной пленки, по которой мелкодисперсная сконденсировавшаяся влага скользит без коагуляции и укрупнения, т.е. без образования «пятна» жидкости от входа 17 и 24 до выхода 23 и 28 проходных каналов 18 и 25 (см., например Литвинова Л.А., Соврук Е.Н. Наноразмерные пленки оксида тантала, полученные ионно-плазменным методом // Сборник трудов региональной научно-практической конференции «Современные проблемы и достижения аграрной науки в животноводстве, растениеводстве и экономике». – Томск: ТСХИ НГАУ. – Вып.12 – 2010 –С. 299-301). Следовательно покрытие «горячих»29 и «холодных» 31 концов дифференциальных термопар 30, а также внутренних поверхностей 34 и 35 проходных каналов 18 и 25 корпуса 18 диэлектриком 36 и 37 из оксида тантала в виде стеклообразной наноподобной пленки обеспечивает не только поддержание нормированных значений термоЭДС при длительной эксплуатации, но и способствует повышению коррозионной стойкости термогенератора в целом.

При расположении вихревого классификатора в помещении с температурой 15-20 оС (см. например, СНиП 2.23-92 Строительная теплофизика, М.: ЦНТП. Госстрой РФ 1996), горячий поток сжатого воздуха с температурой от 80 до 100 оС после термодинамического расслоения отдает тепло теплопроводностью по толщине цилиндрической прямоточной вихревой камеры 1 через наружную поверхность 31 и далее конвекцией в окружающую среду. В результате температура горячего периферийного потока, начиная от завихрителя 10 до каналов вывода 2 классифицируемого материала уменьшается из-за потерь в окружающую среду, что резко снижает эффект разделения на мелкие и крупные фракции. Для устранения потерь теплоты горячего периферийного потока наружная поверхность 31 покрыта теплоизоляционным базальтовым материалом 32. А выполнение тонковолокнистого базальтового материала 32 в виде продольно вытянутых пучков 33, расположенных по длине цилиндрической камеры 1 позволяет аккумулировать теплоту горячего периферийного потока термодинамически расслоившегося сжатого воздуха по мере его движения (см. например, Волокнистые материалы из базальтов Украины. Изд. Техника, Киев, 1971. – 76 с., ил.). В результате при перемещении классифицируемого материала поддерживается заданный температурный режим по всей длине цилиндрической прямоточной вихревой камеры, обеспечивающий нормированные параметры разделения мелких и крупных фракций порошкового материала.

Известно, что при термодинамическом расслоении сжатого воздуха разность температур между горячим и холодным потоками достигает 100 оС и более ( см., например, Меркулов А.П. Вихревой эффект и его применение в технике. М.: Машиностроение, 1979, 386 с.). Горячий поток сжатого воздуха из канала вывода 2 классифицируемого материала поступает в фильтр 21, где очищается от твердых загрязнений порошкового материала, которые накаливаются в сборнике загрязнений с последующим удалением вручную или автоматически ( на фиг. 1 не показано), и далее через вход 17 перемещается в проходной канал 18 для горячего потока сжатого воздуха корпуса 19 термоэлектрического генератора 20. Здесь горячий поток сжатого воздуха контактирует с расположенными «горячими» концами 29 комплекта дифференциальных термопар 30. Одновременно холодный поток сжатого воздуха из канала вывода 5 крупной фракции поступает в фильтр 26, где очищается от загрязнений, которые накапливаются в сборнике загрязнений 27 с последующим удалением вручную или автоматически, и далее направляется в проходной канал 25 для холодного потока сжатого воздуха через вход 24 для контакта с «холодными» концами 31 комплекта дифференциальных термопар 30, например их хромель-копеля позволяет получить термоЭДС до 6,96 мВ (см., например, Иванова Т.М. Теплотехнические измерения и приборы. М.: Энергоатомиздат, 1984. 230 с.) В результате термоэлектрический генератор 20 обеспечивает напряжение от 12 до 36 В (см., например, технические основы теплотехники. Теплотехнический эксперимент. Справочник /под общ. ред. В.М.Зорина. М.: Энергоатомиздат, 1980, 560 с.), что вполне достаточно для блока управления 13, электрически связанного с клапанами 6 и 7, следовательно, наблюдаемый температурный перепад между горячим и холодным потоками термодинамически расслоенного сжатого воздуха в завихрителе 10, является источником электрической энергии посредством термоэлектрического генератора 20 для систем автоматического контроля технологического процесса классификации порошкового материала.

Сжатый воздух через клапаны управления 6 при их открытии по каналу ввода 8 поступает в завихритель 10 закручивающегося аппарата 3, куда одновременно транспортируется классифицируемый материал по каналу ввода 4. В результате вихревого эффекта происходит термодинамическое расслоение порошково-газовой смеси на горячий периферийный поток сжатого воздуха и порошка, перемещающегося к каналам вывода 2. Значение температуры горячего потока фиксируется датчиками температуры 11.

Сигнал от датчиков температуры 11 поступает в блок управления 13, который преобразует данный сигнал и подает соответствующую команду на клапаны управления 6, обеспечивая дальнейшее поступление сжатого воздуха заданных параметров в завихритель 10. Холодный центральный поток сжатого воздуха термодинамически расслаиваемой порошково-газовой смеси транспортирует крупные фракции классифицируемого материала к каналам вывода 5, при этом величина температуры холодного потока фиксируется датчиками температуры 12. Сигнал от датчиков температуры 12 поступает в блок управления 13, который преобразует данный сигнал и подает соответствующую команду на клапаны управления 7, обеспечивая работу его в заданном режиме.

Крупные фракции порошкового материала, перемещаясь под воздействием холодного потока сжатого воздуха, с температурой ниже, чем температура воздушной среды, окружающей классификатор, от входного отверстия 15 к выходному отверстию 16, являются «ядрами конденсации» паров влаги, находящейся в воздухе. В результате микрокаплеобразования ( иногда переходящего в тумано- и инееобразование) и крупные фракции уже в полости канала вывода 5 интенсивно слипаются, нарушая технологический процесс классификации. При этом наибольшее лавинообразование слипающихся крупных фракций наблюдается вблизи внутренней поверхности канала вывода 5 крупной фракции, т.е. в пограничном слое, где имеет место ламинарное течение потока с образованием застойных зон, резко увеличивающих аэродинамическое сопротивление данного элемента классификатора. Выполнение канала вывода 5 крупной фракции в виде расширяющегося сопла обеспечивает ускорение выхода крупной фракции с уменьшением вероятности столкновения и последующего слипания классифицируемого материала.

Т.к. сечение канала 5 крупной фракции возрастает от входа к выходу, то это дает возможность крупным фракциям разлетаться. А наличие криволинейных каналов 14 на внутренней поверхности расширяющегося сопла 5 способствует устранению застойных зон, т.е. переходу из ламинарного течения потока непосредственно у стенки канала в турбулентное. Т.к. холодный поток, транспортирующий крупные фракции, имеет температуру ниже температуры окружающей классификатор среды, то канал 5, подвергаясь различному температурному воздействию на внутренней и внешней поверхности, создает резонансные с движущимся потоком волнообразные колебания, приводящие в конечном итоге к возрастанию аэродинамического сопротивления классификатора. Поэтому предлагается выполнить канал 5 крупной фракции биметаллическим (см., например, Биметаллы. Дмитриев А.Н. и др. Пермь, 1991, 416 с.), что для данного температурного перепада практически устраняет волнообразное колебание внутренней поверхности и, соответственно, условия для увеличения аэродинамического сопротивления.

Оригинальность предлагаемого технического решения заключается в том, что использование оксида тантала в качестве диэлектрика при покрытии «горячих» и «холодных» концов в виде стеклоподобной нанообразной пленки, обеспечивает поддержание при длительной эксплуатации эффективной работы вихревого классификатора порошковых материалов, путем устранения налипания последующего укрупнения с коагуляцией мелкодисперсной влаги, конденсирующейся из термодинамически расслоенного сжатого воздуха в корпусе термогенератора при выработке термоЭДС.

Вихревой классификатор порошковых материалов, включающий цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого материала в виде кольцевых щелей, камеру с каналами вывода крупной фракции, каждый из каналов вывода крупной фракции выполнен в виде расширяющегося сопла из биметаллического материала, при этом на внутренней поверхности расширяющегося сопла выполнены криволинейные канавки, продольно расположенные от входного до выходного отверстий, при этом один из клапанов вывода классифицируемого материала в виде кольцевой щели и один из каналов вывода крупной фракции в виде расширяющегося сопла из биметалла с продольно расположенными канавками на внутренней поверхности соединены с термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для горячего потока сжатого воздуха, транспортирующего классифицируемый материал, и проходным каналом для холодного потока сжатого воздуха, транспортирующего крупные фракции, а также с комплектом дифференциальных термопар, «горячие» концы которых расположены в проходном канале для горячего потока сжатого воздуха, а их «холодные» концы расположены в проходном канале для холодного потока сжатого воздуха, причем цилиндрическая прямоточная вихревая камера с наружной поверхности покрыта тонковолокнистым базальтовым материалом, выполненным в виде продольно вытянутых пучков, расположенных по длине цилиндрической камеры, отличающийся тем, что «горячие» и «холодные» концы дифференциальных термопар, расположенные, соответственно, на внутренних поверхностях проходного канала для горячего и проходного канала для холодного сжатого воздуха, покрыты диэлектриком в виде стеклоподобной нанообразной пленки из оксида тантала.
Вихревой классификатор порошковых материалов
Вихревой классификатор порошковых материалов
Источник поступления информации: Роспатент

Показаны записи 241-250 из 422.
17.08.2018
№218.016.7c59

Способ получения мелкокристаллического корунда

Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка - оксида алюминия (корунда), и может быть использовано в металлообрабатывающей, машиностроительной, химико-металлургической промышленности. Отходы электротехнической алюминиевой проволоки,...
Тип: Изобретение
Номер охранного документа: 0002664149
Дата охранного документа: 15.08.2018
07.09.2018
№218.016.83ed

Быстродействующее устройство формирования уникальной последовательности, используемой при обезличивании персональных данных

Изобретение относится к области вычислительной техники. Техническим результатом является повышение уровня безопасности информационной системы персональных данных. Раскрыто быстродействующее устройство формирования уникальной последовательности для каждого субъекта информационной системы...
Тип: Изобретение
Номер охранного документа: 0002665899
Дата охранного документа: 04.09.2018
07.09.2018
№218.016.847b

Способ автоматизированного оповещения водителей транспортных средств на особо опасных участках дороги

Изобретение относится к технике управления дорожными транспортными средствами и касается обеспечения безопасности движения транспортных средств. Способ автоматизированного оповещения водителей транспортных средств на особо опасных участках дороги в том, что по краям дороги перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002666103
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.84de

Способ автоматизированного определения и контроля местоположения транспортного средства на дорожном полотне с двусторонним однополосным движением

Изобретение относится к технике управления дорожно-транспортным движением и касается определения местоположения транспортных средств на дорожном полотне с двусторонним однополосным движением. Для определения местоположения всех транспортных средств, въезжающих в зону контролируемого участка...
Тип: Изобретение
Номер охранного документа: 0002666087
Дата охранного документа: 05.09.2018
03.10.2018
№218.016.8d2f

Система лучистого отопления здания

Изобретение относится к отопительным системам здания. Система лучистого отопления здания с несущими стенами и внутренними перегородками включает камеру подогрева воздуха, сборные каналы, горизонтальные подающие каналы, горизонтальные распределительные каналы, вертикальные воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002668239
Дата охранного документа: 27.09.2018
13.10.2018
№218.016.9113

Безвентиляторная градирня

Изобретение относится к теплоэнергетике и может быть использовано при воздушном охлаждении оборотной воды в градирнях ТЭЦ, АЭС и промышленных предприятий. Везвентиляторная градирня содержит вертикальную башню с водопароулавливателем, воздухозаборными окнами, резервуар для сбора охлажденной...
Тип: Изобретение
Номер охранного документа: 0002669430
Дата охранного документа: 11.10.2018
21.10.2018
№218.016.949c

Способ получения карбоксилатов олова (ii)

Изобретение относится к простому способу получения карбоксилатов олова (II) путем взаимодействия металла с окислителем в присутствии стимулирующей добавки йода в бисерной мельнице вертикального типа в уайт-спирите со стеклянным бисером в качестве перетирающего агента в массовом соотношении с...
Тип: Изобретение
Номер охранного документа: 0002670199
Дата охранного документа: 19.10.2018
01.11.2018
№218.016.98dc

Способ получения карбоксилатов олова (ii)

Изобретение относится к способу получения карбоксилатов олова (II) путем взаимодействия металла, его диоксида и карбоновой кислоты в присутствии органического растворителя и стимулирующей добавки йода в бисерной мельнице вертикального типа со стеклянным бисером в качестве перетирающего агента,...
Тип: Изобретение
Номер охранного документа: 0002671197
Дата охранного документа: 30.10.2018
03.11.2018
№218.016.99f9

Продувочная свеча

Изобретение относится к газовой промышленности и предназначено для продувки газопроводов. Технической задачей предлагаемого изобретения является снижение шумового воздействия на окружающую среду при продувке газопроводов посредством продувочной свечи за счет выполнения кривизны криволинейных...
Тип: Изобретение
Номер охранного документа: 0002671541
Дата охранного документа: 01.11.2018
21.11.2018
№218.016.9ebe

Способ определения параметров динамического догружения в растянутых железобетонных элементах конструктивных систем

Предлагаемое изобретение относится к области строительства, в частности к испытаниям растянутых элементов конструкций железобетонных стержневых систем. Способ предусматривает устройство в среднем поперечном сечении испытываемого элемента пазов глубиной и шириной до 0,1 h высоты сечения. В зоне...
Тип: Изобретение
Номер охранного документа: 0002672771
Дата охранного документа: 19.11.2018
Показаны записи 231-237 из 237.
23.05.2020
№220.018.2055

Вентиляторная градирня

Изобретение относится к теплотехнике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами, расположенную симметрично...
Тип: Изобретение
Номер охранного документа: 0002721741
Дата охранного документа: 21.05.2020
04.06.2020
№220.018.23d7

Вентиляторная градирня

Изобретение относится к теплоэнергетике и может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами, расположенную симметрично...
Тип: Изобретение
Номер охранного документа: 0002722624
Дата охранного документа: 02.06.2020
24.06.2020
№220.018.29b6

Система лучистого отопления здания

Система лучистого отопления здания относится к строительству, в частности к отопительным системам здания. Технический результат по поддержанию экологически безопасной длительной эксплуатации системы лучистого отопления здания, особенно с высокой насыщенностью внутреннего воздуха твердыми...
Тип: Изобретение
Номер охранного документа: 0002724144
Дата охранного документа: 22.06.2020
27.06.2020
№220.018.2be7

Система гелиотеплохладоснабжения

Технической задачей предлагаемого изобретения является энергосберегающее обеспечение комфортных параметров воздуха в малоэтажных зданиях при длительной эксплуатации в изменяющихся погодно-климатических, в том числе и суточных, воздействиях окружающей среды, путем снижения тепловых потерь...
Тип: Изобретение
Номер охранного документа: 0002724642
Дата охранного документа: 25.06.2020
20.05.2023
№223.018.65a7

Теплица с полной утилизацией сбросных газов

Предлагаемое изобретение относится к теплоэнергетике и сельскому хозяйству, в частности к теплице с полной утилизацией сбросных газов, содержащей зону обработки, соединенную с транзитным газоходом и состоящую из соединенных последовательно через отводной газоход, вентилятора, камеры окисления,...
Тип: Изобретение
Номер охранного документа: 0002748056
Дата охранного документа: 19.05.2021
21.05.2023
№223.018.68f3

Универсальная термоэлектрическая приставка

Изобретение относится к теплоэнергетике. Технический результат - повышение надежности и эффективности универсальной термоэлектрической приставки. Для этого предложена универсальная термоэлектрическая приставка, включающая вертикальный отбортованный с боковых сторон контактный лист, выполненный...
Тип: Изобретение
Номер охранного документа: 0002794747
Дата охранного документа: 24.04.2023
19.06.2023
№223.018.8228

Устройство для измерения прочности бетона

Изобретение предназначено для измерения прочности бетона и содержит ударник и пьезоэлектрический датчик, электроды которого подключены к входам фильтра высоких частот, выход которого соединен со входами измерителя частоты и измерителя коэффициента затухания, снабжено пригрузом изменяемой массы,...
Тип: Изобретение
Номер охранного документа: 0002797126
Дата охранного документа: 31.05.2023
+ добавить свой РИД