×
25.08.2017
217.015.cdc5

Результат интеллектуальной деятельности: Многофункциональный гелевый поршень для очистки трубопроводов и разделения сред и способ получения его

Вид РИД

Изобретение

№ охранного документа
0002619682
Дата охранного документа
17.05.2017
Аннотация: Изобретение относится к очистке трубопроводов переменного диаметра и с изменяемым направлением движения перекачиваемых сред, предназначенных для транспортировки нефти и нефтепродуктов и газового конденсата, а также газов, имеющих различную молекулярную массу. Многофункциональный гелевый поршень для очистки трубопроводов и разделения сред представляет собой композицию, включающую водорастворимый полимер, углеводородную жидкость, органический сшивающий агент, в качестве которого используют полиметилольные производные, неорганический сшивающие агенты и воду. Способ получения гелевого поршня включает последовательное дозирование при перемешивании компонентов в пресную, или минерализованную, или разбавленную пластовую воду. Изобретение обеспечивает высокую степень очистки трубопроводов и безопасность при выполнении работ по очистке. 2 н. и 1 з.п. ф-лы, 2 табл.

Изобретение относится к трубопроводному транспорту нефти и нефтепродуктов и газового конденсата, а также газов, имеющих различную молекулярную массу. Состав предназначен для очистки трубопроводов переменного диаметра до 1200 мм и с изменяемым направлением движения перекачиваемых сред до 90°C, как с подкладными кольцами, так и без них и разделения сред при вытеснении одной среды с помощью другой среды и при последовательной перекачке нефти и различных фиксированных объемов нефтепродуктов, а также для очистки трубопроводов от асфальтосмолопарафиновых отложений, водонефтяных эмульсий, либо пластовой воды, концентрирующейся в наиболее низких точках.

Известен состав гелевого разделительного поршня, который предназначен как для разделения сред, так и для очистки трубопроводов. Состав включает полиакриламид, песок, нефтяное масло, хромовую смесь и воду (а.с. №1622038, B08B 9/04, 1991 г.).

Недостатком известного состава является низкая эффективность герметизации полости трубопровода большого диаметра, недостаточно качественная очистка трубопровода от отложений и неполное освобождение его от водонефтяной эмульсии.

Известен состав гелевого разделительного поршня и разделения сред на основе каучукосодержащего материала, растворителя (нефть, дизельное топливо, керосин), наполнителя (битум) и сшивателя (монохлористая сера) (патент RU №2112179, F17D 3/08, 1998 г.).

Недостатком известного состава является сложность технологического и аппаратурного исполнения, токсичность состава за счет использования монохлористой серы.

Известен состав гелевого разделительного поршня на основе полиакриламида, алифатического спирта С2-С3, сшивателя, смеси минеральных солей и вода - остальное (патент RU №2115858, 6F 17D 3/08).

Недостатком известного состава является низкий уровень герметизации полости трубы, особенно для трубопровода диаметром 300 мм и более.

Известен состав гелевого разделительного поршня на основе полиакриламида, углеводородной жидкости, сшивающего агента, соли щелочного или щелочноземельного металла и вода - остальное (патент RU №2209364 B08B 9/027, F17D 1|12, оп. 2003 г.).

Недостатком известного состава является невысокий уровень герметизации полости трубы разделительным поршнем, особенно для трубопровода переменного диаметра с крутыми поворотами при его очистке, так как при этом происходит нарушение сплошности гелевого разделительного поршня.

Наиболее близким по составу и достигаемому результату является состав разделительного поршня для очистки трубопровода и разделения сред, содержащий полиакриламид, нефтепродукт, соль минеральной кислоты, сшивающий агент, порошкообразное производное формальдегида и пресная вода - остальное (патент RU №2271879, B08B 9/027, оп. 2004 г.).

Недостатком состава является невысокий уровень герметизации полости трубы гелевым поршнем в трубах диаметром 300 мм и более с подкладными кольцами.

Целью является создание многофункционального гелевого поршня и способа получения его, обеспечивающего высокий уровень герметизации полости трубы переменного диаметра до 1200 мм и с изменяемым направлением движения перекачиваемых сред до 90° как с подкладными кольцами, так и без них и разделения сред.

Поставленная задача достигается тем, что многофункциональный гелевый поршень для очистки трубопроводов и разделения сред, включающий водорастворимый полимер, углеводородную жидкость, органический и неорганический сшивающий агент и воду, отличающийся тем, что в качестве водорастворимого полимера используют водорастворимые полимеры разных классов, в качестве органического сшивающего агента - полиметилольные производные мочевины при следующем соотношении компонентов, мас. %:

Водорастворимый полимер 8,0-10,0
Углеводородная жидкость 6,0-8,0
Полиметилольные производные мочевины 0,5-3,0
Неорганический сшивающий агент 0,001-0,003
Вода остальное

Состав дополнительно содержит регулятор кислотности в количестве 0,1-0,4 мас. %. Способ получения многофункционального гелевого поршня для очистки трубопроводов и разделения сред, отличающийся тем, что в качестве компонентов для приготовления гелевого поршня используют состав по п. 1, включающий последовательное дозирование при перемешивании компонентов состава, мас. %: в расчетное количество пресной или минерализованной, или разбавленной пластовой воды минерализацией до 100 г/л дозируют 0,5-3,0 полиметилольных производных мочевины, 0,001-0,003 неорганического сшивающего агента и приготовленную суспензию 8,0-10,0 водорастворимого полимера в 6,0-8,0 углеводородной жидкости и дополнительно дозируют 0,1-0,4 регулятора кислотности по п. 2, затем все компоненты тщательно перемешивают и формируют гелевый поршень в производственных условиях.

В качестве водорастворимого полимера используют порошкообразный гидрализованный полиакриламид (ПАА) с ММ=8-18⋅106 и степенью гидролиза 5-20%, например, ПАА марок CS-131, CS-134, PDA-1004, PDA-1041, DKS-ORP-F-40NT производства Японии, ПАА марок FP-107, FP-207, AN-132 производства Франции; ПАА марки DSGA производства США; биополимеры на основе глюкозы, маннозы, соли глюконовой кислоты и ацетильных радикалов, не чувствительных к высокой температуре - гетерополисахарид марки ГПС или полимерная смесь производных полисахаридов марки Полимерный реагент ПС; полиметакриловую кислоту (ПМАК) или сополимер метакриловой кислоты или метакриламид марки Метас; поливиниловый спирт (ПВС); сополимеры винилацетата и винилового спирта; замещенную целлюлозу: карбоксиметилцеллюлозу (КМЦ) со степенью полимеризации СП=350-1200 и степенью замещения по карбоксильным группам СЗ=80-90, например, КМЦ марок КМЦ-500-1200, оксиэтилированную целлюлозу марки ОЭЦ или гидроэтилцеллюлозу ГЭЦ и ее модификации, или метилцеллюлозу марки МЦ, или модифицированную лигносульфонатами натрийкарбоксиметилцеллюлозу марок Полицел КМЦ-М и Полицел КМЦ-ТС, высоковязкую полианионную целлюлозу марки Полицел ПАЦ, выпускающуюся по ТУ 2231-013-32957739-00.

В качестве углеводородной жидкости используют легкую нефть или дизельное топливо, или газовый конденсат.

В качестве органического сшивателя используют полиметилольные производные мочевины, в процессе получения которых используют наноматериалы, представляют собой жидкую композицию, содержащую полиметилольные производные мочевины и связанный метилольными производными формальдегид, выпускаемую по ТУ 2223 - 009 00206492-2007 на ОАО «Тольяттиазот».

В качестве неорганического сшивающего агента используют алюмохромфосфатное связующее, выпускаемое по ТУ 2149-150-10964029-01 на ЗАО «ФК» г. Буй Костромской области или соли поливалентных металлов: хлорид или сульфат хрома, или хромово-калиевые квасцы.

Алюмохромфосфатное связующее (АХФС) представляет собой вязкую жидкость темно-зеленого цвета с удельной массой 1550-1770 кг/м3 при 20°C и содержит 6,5-9,0% массовой доли алюминия в пересчете на Al2O3, 3,5-4,5% массовой доли хрома в пересчете на Cr2O3, 35-40% массовой доли фосфатов в пересчете на P2O5, является пожаро- и взрывобезопасным продуктом.

В качестве растворителя используют пресную или минерализованную сточную или разбавленную пластовую воду минерализацией до 100 г/л.

В качестве регулятора кислотности, обеспечивающего pH системы в диапазоне 3-6, используют соляную и лимонную кислоты.

При перекачивании нефти или нефтепродуктов из-за непрерывного выпадения осадков из перекачиваемых продуктов, образования внутренних газовоздушных скоплений и воды уменьшается пропускная способность трубопроводов, в результате чего увеличивается гидравлическое сопротивление в них. В связи с этим возрастают расходы электроэнергии на транспорт нефти или нефтепродуктов.

Особенно страдают трубопроводы, имеющие сложную конфигурацию и переменное сечение, а также трубопроводы большого диаметра с подкладными кольцами.

Водяные и газовоздушные скопления увеличивают гидравлическое сопротивление трубопроводов, снижают качество перекачиваемого продукта, способствуют образованию водонефтяных, газоводонефтяных эмульсий систем.

При наличии задачи разделения двух различных сред, например, при последовательной прокачке нефти и нефтепродуктов при невысокой эффективности существующих разделителей часто ведется прямая перекачка контактируемых жидкостей, что приводит к образованию смеси и потере качества перекачиваемых продуктов.

Используемые для очистки механические очистные устройства малоэффективны при использовании их в трубопроводах переменного диаметра.

Высокое качество очистки трубопроводов достигается при использовании гелевых поршней.

В прототипе в качестве полимера используют полиакриламид (ПАА).

В отличие от прототипа в заявленном составе используют в качестве водорастворимого полимера, кроме полиакриламида, другие классы полимеров: биополимеры, например, гетерополисахарид марки ГПС и полимерная смесь производных полисахаридов марки Полимерный реагент ПС; полиметакриловую кислоту (ПМАК) или сополимер метакриловой кислоты или метакриламид марки Метас; поливиниловый спирт (ПВС); сополимеры винилацетата и винилового спирта; замещенную целлюлозу: карбоксиметилцеллюлозу марок КМЦ 500-1200, оксиэтилированную целлюлозу марки ОЭЦ, гидроэтилцеллюлозу ГЭЦ и ее модификации, метил целлюлозу марки МЦ, а также модифицированную лигносульфонатами натрий карбометилцеллюлозу марок Полицел КМЦ-М и Полицел КМЦ-ТС, высоковязкую полианионную целлюлозу марки Полицел ПАЦ.

По прототипу порошкообразные производные формальдегида (параформальдегид или уротропин) сначала растворяют в пресной воде и доводят pH до 2,6-3,0 с помощью соляной кислоты и проводят гидролиз для получения формальдегида.

По заявленному составу в отличие от прототипа проводить гидролиз или другие дополнительные операции проводить не надо, так как полиметилольные производные мочевины (ППМ) уже содержат 50-60 мас. % формальдегида, но в связанном состоянии. Для активизации его необходимо в пресную или минерализованную воду при перемешивании ввести ППМ и все вышеперечисленные компоненты. Добавление регулятора кислотности способствует ускорению реакции поликонденсации: взаимодействию функциональных групп полимера с метилольными группами формальдегида, при этом молекулы связанного формальдегида переходят в активную (свободную) форму и вступают во взаимодействие с полимером с образованием системы связей, необходимой для образования высокомолекулярного резиноподобного геля.

Наряду с реакцией поликонденсации происходит взаимодействие полимера с метилольными группами органического сшивателя. Добавление регулятора кислотности катализирует сшивку полимера с полиметилольными производными мочевины (ППМ), в результате чего образуется композиция, в которой метилольные группы полиметилольных производных мочевины образуют водородные связи, вызывающие ассоциацию молекул и рост молекулярной массы полимера, и ускоренное нарастание вязкости композиции. В реакционной массе инициируются реакции поликонденсации и присоединения, которые приводят к образованию высоковязкой композиции.

В результате взаимодействия функциональных групп полимера с полиметилольными производными мочевины и поливалентными катионами алюминия и хрома неорганического сшивателя формируются молекулярные структуры различной длины и разветвленности с высокой функциональностью по метилольным группам.

Образованию разветвленных молекул полимера способствует повышенное содержание в композиции три- и тетраметилол мочевины. Вследствие разветвленности структурных образований, которые характеризуются небольшой длиной при относительно высокой молекулярной массе, происходит этап гелеобразования и сшивка гелевых структур в высоковязкую пространственно-развитую полимерную сетку, что обеспечивает высокий уровень герметизации полости трубы в трубопроводе переменного диаметра.

В прототипе используют в качестве неорганического сшивателя хромокалиевые квасцы.

В заявленном составе в качестве неорганического сшивателя используют алюмохромфосфат связующее (АХФС), содержащее два катиона поливалентного металла: трехвалентные катионы алюминия и хрома, а также в качестве неорганического сшивателя используют соли поливалентного металла: хлориды, сульфаты алюминия и хрома или хромокалиевые квасцы.

В реакционной массе композиции наряду с вышеописанной реакцией поликонденсации, например при использовании, ПАА, по амидным группам полимера и формальдегида, параллельно проходит реакция полимеризации по карбоксильным группам полимера и катионам поливалентного металла.

Кроме того, в заявленном составе протекает сшивка функциональных групп водорастворимого полимера и полиметилольных групп органического сшивателя (полиметилольных производных мочевины) и дополнительно неорганического сшивателя, содержащего два трехвалентного катиона: алюминия и хрома (АХФС), в результате чего снижается концентрация неорганического сшивателя в составе до 0,001-0,003 мас. %, т.е. в 2-3 раза.

Заявленный состав готовят так. В расчетное количество пресной или минерализованной сточной, или разбавленной пластовой воды минерализацией до 100 г/л при перемешивании дозируют, мас. %: 0,5-3,0 полиметилольных производных мочевины, 0,001-0,003 неорганического сшивающего агента из вышеперечисленных. Затем при перемешивании дозируют приготовленную суспензию 8,0-10,0 полимера в 6,0-8,0 углеводородной жидкости, тщательно перемешивают и формируют гелевый поршень, закачивая его в специальные тубы, которые имеют сопрягающие элементы, соответствующие по размеру диаметру очищаемого трубопровода в расчетном количестве, необходимом для проведения работ по очистке трубопровода.

Для регулирования вязкости приготовляемого гелевого поршня в композицию дозируют соляную кислоту в количестве 0,1-0,4 мас. % по п. 2.

В отличие от прототипа формирование разделительного поршня: процесс набухания и сшивки полимера проходит в специальных тубах. Формирование поршня происходит в течение 30-80 минут в зависимости от концентрации компонентов.

В результате смешения компонентов в тубах образуется резиноподобный высоковязкий состав, который при продавке готового поршня в полость очищаемого трубопровода полностью перекрывает его сечение без нарушения сплошности разделительного поршня даже при переходе из меньшего диаметра в больший и наоборот и обеспечивает высокий уровень герметичности полости трубы.

Важным отличием заявленного многофункционального гелевого поршня от прототипа является то, что формирование гелевого поршня осуществляется не на объекте в полевых условиях, а в производственных стационарных условиях, обеспечивающих высокое качество изготовления гелевых поршней и комфортную работу обслуживающему персонала. При этом транспортирование гелевых поршней на объект осуществляется в вышеуказанных специальных тубах.

В отличие от прототипа продавка готового поршня осуществляется без использования камеры приема-пуска. Из тубов готовый поршень под давлением с помощью баллонов с азотом выдавливают в полость очищаемого трубопровода. Подсоединение к трубопроводу обеспечивается с помощью фланцевых соединений. Продавливание готового поршня с помощью баллонов с азотом обеспечивает высокую степень безопасности при выполнении работ.

Получаемые по заявленному составу гелевые поршни можно использовать для очистки трубопровода переменного диаметра до 1200 мм и с изменяемым направлением движения перекачиваемых сред до 90° как с подкладными кольцами, так и без них.

Эксперименты по оценке эффективности гелевого состава по сравнению с прототипом проводили на стенде, который представляет собой трубопровод переменного диаметра 15-25 мм и длиной 30 м и включает в себя повороты под углом 90°.

На внутреннюю поверхность трубы перед началом эксперимента наносили грязепарафиновые отложения, которые были отобраны из реальных магистральных трубопроводов. Нанесенные отложения предварительно взвешивали. Затем готовили композиции гелевого состава для формирования гелевого разделительного поршня (ГРП) по прототипу и по заявленному составу.

Кроме лабораторного стенда, оценку эффективности очистки трубопроводов проводили в промысловых условиях в трубопроводах и подводных переходах переменного диаметра 300 - 500 мм длиной 200-1000 м. Гелевые поршни для промысла готовили на основе заявленного состава: композиции, указанные в описании и в табл. 1.

Для определения прочностной характеристики гелевого поршня замеряют модуль упругости полученного поршня. Это позволяет связать прочностную характеристику гелевого поршня с уровнем эффективности очистки от асфальтосмолопарафиновых отложений (АСПО), разделения нефти и вытесняющей воды.

Модуль упругости гелевого поршня определяли методом одноосного сжатия. Способ определения модуля упругости полимерных гелей заключается в определении зависимости нагрузки на образец от величины деформации при сжатии образца. Давление на образец производится рабочей поверхностью насадки микрометра. Величина деформации определяется по микрометру. Показания весов дают величину приложенной нагрузки.

Композиции заявленного состава представлены в табл. 1.

Результаты по эффективности очистки трубопровода с помощью гелевого поршня приведены в табл.2. Эффективность очистки стенок трубы от грязепарафиновых отложений определяют по количеству выведенных из трубы отложений, отнесенных к количеству отложений в трубе до ее очистки.

Эффективность разделения сред оценивалась по факту прорыва выталкивающей поршень воды и по состоянию сплошности поршня после прохождения его по трубопроводу.

По прототипу модуль упругости композиций состава увеличивается с 1,5 Па до 2,8 Па, а по заявленному составу с 2,1 Па до 6,3 Па, т.е. увеличение модуля упругости составило в 1,4-2,25 раза.

По прототипу эффективность очистки трубопровода составила 67% - 79%, а по заявленному составу составила 69% - 90-95%.

Эффективность разделения сред, как по прототипу, так и по заявленному составу высокая: прорыва воды нет, сплошность поршня сохранена.

Техническим результатом является создание многофункционального гелевого поршня и способа получения его, который обеспечивает высокий уровень герметизации полости трубы переменного диаметра до 1200 мм и с изменяемым направлением движения перекачиваемых сред до 90° как с подкладными кольцами, так и без них и разделения сред, и формирование гелевого поршня осуществляется в производственных стационарных условиях, обеспечивающих высокое качество гелевого поршня; при этом транспортирование гелевых поршней на объект осуществляется в специальных тубах, которые имеют сопрягающие элементы, соответствующие по размеру диаметру очищаемого трубопровода, и продавка готового поршня в полость очищаемого трубопровода осуществляется под давлением с помощью баллонов с азотом без использования камеры приема-пуска, что обеспечивает высокую степень безопасности при выполнении работ и комфортную работу обслуживающему персонала.

Источник поступления информации: Роспатент

Показаны записи 21-29 из 29.
05.07.2019
№219.017.a66f

Жаропрочный сплав аустенитной структуры с интерметаллидным упрочнением

Изобретение относится к металлургии, в частности к жаропрочным сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 850-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002693417
Дата охранного документа: 02.07.2019
06.07.2019
№219.017.a8f4

Способ изоляции притока пластовых вод в скважине и крепления призабойной зоны пласта

Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции притока пластовых вод в скважине, регулирования профиля приемистости нагнетательных скважин, регулирования разработки нефтяных месторождений. Кроме того, способ может найти применение для крепления...
Тип: Изобретение
Номер охранного документа: 0002446270
Дата охранного документа: 27.03.2012
03.08.2019
№219.017.bc0d

Совмещённый способ получения гидрокарбоната натрия и азотного удобрения смешанного типа

Изобретение относится к технологии получения гидрокарбоната натрия и азотных удобрений смешанного типа конверсией раствора солей углекислым аммонием или смесью аммиака и диоксида углерода и может найти применение на крупнотоннажных агрегатах нефтехимии, имеющих в своем составе цеха...
Тип: Изобретение
Номер охранного документа: 0002696450
Дата охранного документа: 01.08.2019
24.08.2019
№219.017.c390

Способ получения метанола

Настоящее изобретение относится к области основого органического синтеза, в частности к способу получения метанола. Способ заключается в подаче синтез-газа с циркуляционным газом на компримирование и контактирование в реакторе с медно-цинковым катализатором при температуре 220-290°С, с...
Тип: Изобретение
Номер охранного документа: 0002698200
Дата охранного документа: 23.08.2019
02.10.2019
№219.017.cc32

Тренажёр для скрининг - мониторинга вестибулярной устойчивости

Изобретение относится к области медицины, а именно оториноларингологии и лечебно-физической культуре, и может быть рекомендовано для тренировки и укрепления вестибулярного аппарата у спортсменов, отдыхающих в санаториях лиц и специалистов, занятых работой на высоте, для которых важна...
Тип: Изобретение
Номер охранного документа: 0002701410
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.cde7

Жаропрочный сплав

Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002700346
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d10f

Жаропрочный сплав

Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сплавам аустенитного класса и может быть использовано при изготовлении коллекторов реакционных труб высокотемпературных установок водорода, метанола и аммиака. Жаропрочный сплав содержит, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002700347
Дата охранного документа: 16.09.2019
22.05.2023
№223.018.6b47

Способ защиты бетонных строительных конструкций от коррозионного воздействия карбамида

Изобретение относится к способам защиты бетонных строительных конструкций от коррозионного воздействия карбамида. Технический результат - увеличение срока эксплуатации нанесенных противокоррозионных покрытий, а также исключение выбросов в атмосферу высокотоксичного формальдегида при нанесении...
Тип: Изобретение
Номер охранного документа: 0002795779
Дата охранного документа: 11.05.2023
17.06.2023
№223.018.80c3

Жаропрочный сплав

Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002765806
Дата охранного документа: 03.02.2022
Показаны записи 21-30 из 45.
11.03.2019
№219.016.dc70

Способ разработки неоднородного нефтяного пласта

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки неоднородного пласта нефтяных месторождений, также может быть использовано для изоляции водопритока в нефтяные скважины, для увеличения нефтеотдачи и снижения обводненности продукции скважин и для...
Тип: Изобретение
Номер охранного документа: 0002401939
Дата охранного документа: 20.10.2010
11.03.2019
№219.016.dd7e

Способ крепления призабойной зоны скважины

Изобретение относится к технике и технологии подземного ремонта скважин, а именно к способу крепления призабойной зоны пласта, создания заколонного фильтра в продуктивном пласте нефтяных, водяных и газовых скважин, и может применяться для регулирования разработки нефтяных месторождений, для...
Тип: Изобретение
Номер охранного документа: 0002467156
Дата охранного документа: 20.11.2012
10.04.2019
№219.016.ff4b

Способ получения огнезащитного состава

Изобретение относится к способам получения антипиренов и может быть использовано в деревообрабатывающей промышленности, а также в строительстве при проведении профилактических мероприятий по огнезащите изделий из сухой древесины. Способ осуществляют путем смешения алюмохромфосфата,...
Тип: Изобретение
Номер охранного документа: 0002277046
Дата охранного документа: 27.05.2006
10.04.2019
№219.017.03c5

Способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья

Изобретение относится к области химии и может быть использовано при получении синтез-газа. Углеводородное сырье в смеси с водяным паром пропускают через обогреваемые трубы реактора, внутри которых размещают катализатор в виде слоя гранул, включающих никель, причем участки поверхностей...
Тип: Изобретение
Номер охранного документа: 0002357919
Дата охранного документа: 10.06.2009
21.04.2019
№219.017.3647

Способ получения карбамидоформальдегидного концентрата

Изобретение относится к способу получения карбамидоформальдегидного концентрата. Способ включает хемосорбцию формальдегида, образующегося при окислительном дегидрировании метанола на железомолибденовом катализаторе в реакторе трубчатого или полочного типа, 50-65%-ным водным раствором карбамида...
Тип: Изобретение
Номер охранного документа: 0002685503
Дата охранного документа: 19.04.2019
18.05.2019
№219.017.57e1

Прозрачная глазурь

Использование в производстве материалов для стройиндустрии, в частности для покрытия изделий декоративного, утилитарного и хозяйственного назначения, керамических плиток. Прозрачная глазурь включает, мас.%: SiO - 51,0-66,0; AlО - 5,0-12,0; ВО - 8,1-15,0; CaO - 1,0-7,0; MgO - 1,0-7,0; SrO -...
Тип: Изобретение
Номер охранного документа: 0002338705
Дата охранного документа: 20.11.2008
18.05.2019
№219.017.5802

Способ определения концентрации карбамидоформальдегидного концентрата

Изобретение относится к аналитической химии и может быть использовано для определения суммарного содержания карбамида и формальдегида в карбамидоформальдегидном концентрате. Способ определения концентрации карбамидоформальдегидного концентрата включает измерение двух его характерных параметров....
Тип: Изобретение
Номер охранного документа: 0002339035
Дата охранного документа: 20.11.2008
18.05.2019
№219.017.5815

Огнетушащий состав

Изобретение относится к огнетушащим составам и может быть использовано при пожаротушении твердых материалов. Огнетушащий состав включает смачиватель и воду. В качестве смачивателя используют антипирен марки "ОСА-1", полученный путем взаимодействия карбамидоформальдегидного концентрата с...
Тип: Изобретение
Номер охранного документа: 0002333025
Дата охранного документа: 10.09.2008
18.05.2019
№219.017.581c

Способ получения метанола

Изобретение относится к способу получения метанола контактированием газовой смеси, содержащей оксиды углерода и водород, с медно-цинковым катализатором при температуре 200-290°С, давлении 5-15 МПа и объемной скорости 3000-10000 ч. При этом конвертированный газ состава, об.%: Н - 64,0-75,5; Ar -...
Тип: Изобретение
Номер охранного документа: 0002331625
Дата охранного документа: 20.08.2008
18.05.2019
№219.017.5821

Способ получения карбамидоформальдегидного концентрата

Изобретение относится к способу получения карбамидоформальдегидного концентрата, применяемого в качестве сырья в производстве высококачественных малотоксичных смол, используемых для склеивания древесины, при получении ДСП, ДВП и МДФ класса эмиссии Е-1 по формальдегиду, а также как...
Тип: Изобретение
Номер охранного документа: 0002331654
Дата охранного документа: 20.08.2008
+ добавить свой РИД