×
25.08.2017
217.015.cbf5

Результат интеллектуальной деятельности: Способ получения покрытия на имплантатах из титана и его сплавов

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению микропористых структур на поверхности изделий из титана или его сплава и может быть использовано в области медицинской техники при изготовлении из титана и его сплавов поверхностно-пористых эндопротезов и имплантатов для травматологии, ортопедии, различных видов пластической хирургии, для подготовки поверхности титановых имплантатов под нанесение биоактивных покрытий. Способ включает лазерную обработку поверхности в среде аргона при мощности излучения 400-500 Вт и заданной скорости перемещения лазерного луча с одновременной подачей в зону облучения порошка карбида титана, последующее травление в концентрированной азотной кислоте в течение 3-7 суток, отмывание от кислоты и сушку при температуре 50-100°С. Технический результат изобретения - снижение трудоемкости способа, повышение его производственной и экологической безопасности, увеличение удельной площади поверхности формируемого микропористого покрытия, а также повышение однородности размера и равномерности распределения пор. 2 з.п. ф-лы, 4 пр., 4 ил.

Изобретение относится к получению микропористых структур на поверхности изделий из титана или его сплавов и может быть использовано при изготовлении носителей катализаторов и композитных материалов, находящих применение в различных областях, преимущественно в области медицинской техники при изготовлении поверхностно-пористых эндопротезов и имплантатов для травматологии, ортопедии, различных видов пластической хирургии, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий.

Известен способ формирования многоступенчатой структуры на поверхности титанового имплантата (CN 102912037, опубл. 2013.02.13), включающий полирование поверхности, обезжиривание и очистку путем погружения в раствор, содержащий азотную кислоту, фтористоводородную кислоту и перекись водорода, пескоструйную обработку подготовленной поверхности, очистку и химическое травление обработанной поверхности, промывание и термическую обработку с последующим охлаждением. Необходимость использования технологически сложной, затратной и требующей принятия специальных мер защиты для предотвращения нежелательных воздействий на организм человека и окружающую среду операции пескоструйной обработки и целого ряда подготовительных операций усложняет и удорожает известный способ.

Известен способ обработки титанового имплантата (TW 201420137, опубл. 2014.06.01) путем травления в кислотном растворе с последующим анодным оксидированием и углублением пор, образовавшихся при травлении. При анодном оксидировании на поверхности формируется пористый оксидный слой. Однако состав и адгезионная прочность сцепления с металлической основой указанного слоя сильно зависят от режима оксидирования и состава электролита и для обеспечения эффективной эксплуатации требуют специального подбора.

Известен описанный в заявке US 2011244266, опубл. 2011.10.06 способ обработки поверхности титана либо его сплава, который включает формирование на поверхности титанового материала слоя, содержащего карбид и/или нитрид титана, с применением отжига в атмосфере инертного газа (светлый отжиг) и последующее электрохимическое травление в водном растворе, содержащем кислоту, преимущественно азотную с концентрацией 1-10 масс. %, либо в нейтральном растворе, содержащем окисляющий реагент, с частичным растворением слоя, содержащего карбид и/или нитрид титана, и одновременным формированием внешнего слоя из оксида титана и образованием многослойной структуры толщиной не более 100 нм с внутренним слоем из карбида и/или нитрида титана, обладающей твердостью от 5 до 20 ГПа, высокой коррозионной стойкостью и высокими антифрикционными свойствами. Обработка известным способом не обеспечивает получения материала с поверхностным слоем, обладающим достаточной толщиной и наличием пор с размерами и структурой, необходимыми для эффективной биологической фиксации костной ткани, пригодного для имплантации, а также в качестве основы для нанесения веществ, обладающих биологически активными, каталитическими и другими свойствами.

Известен способ получения пористого титана с высокой степенью однородности размеров пор (RU 2407817, опубл. 2010.12.27), включающий уплотнение исходного порошка заданной фракции в разрушаемой кварцевой трубке в специальном вибрационном устройстве и спекание в вакууме при температуре 630-680°С в течение 2 часов с последующим медленным охлаждением до 100°С в течение 1,5 часов. При этом достигается весьма узкий диапазон размеров пор 2-8 мкм. Однако необходимость предварительного получения порошка карбонильным способом, использование технологически сложных энергоемких операций, глубокого вакуума и сложное аппаратурное оформление в значительной мере препятствуют широкому использованию известного способа.

Наиболее близким к заявляемому является способ получения материала для костных штифтов в ортопедии и зубных имплантатов в стоматологии путем формирования на поверхности титана пористой наноструктуры с высокой биологической активностью (CN 104027839, опубл. 2014.09.10), включающий пескоструйную обработку поверхности для формирования микрорельефа, последующее кислотное травление для углубления образовавшихся кратеров, пропитку в консервирующем растворе и ультрафиолетовое облучение.

Известный способ не обеспечивает возможности формирования пористого слоя заданной толщины с однородными по размеру и равномерно распределенными порами. Кроме того, он является трудоемким и многостадийным, включает технологически сложную операцию пескоструйной обработки, которая является ресурсо- и энергозатратной и запрещена в ряде стран, в том числе в РФ, как представляющая опасность для здоровья людей и экологической обстановки.

Задачей изобретения является создание безопасного для здоровья людей и окружающей среды способа получения на имплантатах из титана и его сплавов поверхностного слоя заданной толщины с пористой микроструктурой, обеспечивающей высокую удельную площадь поверхности, и равномерным распределением пор заданного размера.

Технический результат способа заключается в снижении его трудоемкости, повышении производственной и экологической безопасности, а также в увеличении удельной площади поверхности формируемого микропористого покрытия и повышении однородности размера и равномерности распределения пор.

Указанный технический результат достигают способом получения пористого покрытия на титане и его сплавах, включающим формирование микрорельефа на поверхности титана с ее последующим кислотным травлением, в котором, в отличие от известного, формирование микрорельефа осуществляют в среде аргона с помощью перемещаемого по поверхности изделия лазерного луча с одновременной подачей в облучаемую зону порошка карбида титана, а травление проводят путем погружения в азотную кислоту в течение 3-7 суток.

В преимущественном варианте осуществления способа при лазерной обработке используют мощность излучения 400-500 Вт.

Также в преимущественном варианте осуществления способа лазерный луч перемещают по поверхности имплантата со скоростью 10-20 мм/с.

Способ осуществляют следующим образом.

После стандартной подготовки поверхность изделия из титана или титанового сплава обрабатывают лазерным лучом, поступательно перемещая его со скоростью 10-20 мм/с в атмосфере аргона с непрерывной обдувкой аргоном обрабатываемой поверхности и одновременной подачей порошка карбида титана определенной фракции в облучаемую зону, которая является зоной плавления титановой подложки. Титановая подложка заключена в специальный корпус, удерживающий аргон. Режим обработки (мощность лазерного облучения, скорость перемещения лазерного луча, т.е. время лазерной обработки локального участка поверхности) выбирают таким образом, чтобы обеспечить плавление только поверхностного слоя титановой матрицы заданной толщины (температура плавления титана 1660°С) без плавления карбидного порошка, у которого температура плавления значительно выше (3100°С).

В результате на изделии из титана формируется композитный поверхностный слой, толщину которого можно регулировать в определенных пределах (от 30 до 600 мкм), изменяя мощность лазерного излучения и скорость перемещения лазерного луча.

В оптимальном варианте осуществления способа используют лазерное излучение мощностью 400-500 Вт при скорости перемещения луча 10-20 мм/с.

Увеличение мощности лазерного излучения и/или снижение скорости перемещения луча при прочих неизменных параметрах (давление защитного газа, количество и состав подаваемого порошка, фокусировка луча) приводит к увеличению глубины проплавленного объема титановой подложки, позволяя таким образом регулировать толщину формируемого покрытия.

Сформированный слой имеет композитную микроструктуру, образованную зернами карбида титана, равномерно распределенными в титановой матрице. Кроме того, лазерная обработка поверхности позволяет создать специфический, регулярно «гребенчатый», рельеф за счет многократных параллельных прохождений лазерного луча при частичном наложении упомянутых траекторий.

Затем проводят травление обработанной поверхности концентрированной азотной кислотой путем погружения на 3-7 суток, в результате чего зерна карбида титана полностью растворяются, а титан благодаря способности пассивироваться остается в неизменном виде. Таким образом, на титановом изделии формируется поверхностный слой пористого титана с микроструктурой, образованной сложным рельефом поверхности и системой пор. Размеры пор регулируют путем использования соответствующей фракции порошка карбида титана, от размера частиц которого зависит размер «кратера», образующегося на месте каждой вытравленной частицы. Преимущественно используют порошок карбида титана, обеспечивающий размер пор 1-5 мкм.

Изделие отмывают от кислоты и сушат на воздухе при повышенной температуре 50-100°С.

На приведенных снимках, сделанных с помощью сканирующего электронного микроскопа, показана при различном увеличении микроструктура поверхности титановых образцов, обработанных при различной мощности лазерного излучения и различной скорости перемещения лазерного луча.

На фиг. 1 показана поверхность титанового образца, обработанная лазерным излучением мощностью 400 Вт при скорости перемещения лазерного луча по поверхности 20 мм/с, на фиг. 2 - поверхность после обработки излучением той же мощности при скорости перемещения лазерного луча 10 мм/с, на фиг. 3 - поверхность после обработки излучением мощностью 500 Вт при скорости перемещения лазерного луча 20 мм/с, на фиг. 4 - поверхность облучения той же мощности при скорости перемещения лазерного луча 10 мм/с.

Снимки на фиг. 1, 2 и 4 сделаны при трех различных увеличениях: а) ×40, б) 1500, в) ×4000; снимок на фиг.3 сделан при увеличениях а) ×40, б) ×400, в) ×4000.

Таким образом, предлагаемый способ обеспечивает получение пористого поверхностного слоя на титане и его сплавах с заданной толщиной, обладающего высокой удельной площадью поверхности и равномерно распределенными порами заданного размера.

Примеры конкретного осуществления способа

Для обработки поверхности образцов использован иттербиевый волоконный лазер ЛС-1-К (максимальная мощность 1 кВт) с ЧПУ, позволяющий задавать различную мощность лазерного излучения и скорость перемещения луча, а также регулировать давление защитного газа (аргона) и количество подаваемого порошка. Обработку по созданию рельефа осуществляли на титановых образцах, горизонтально закрепленных в специальной емкости для удержания аргона.

Снимки поверхности после обработки были выполнены с помощью сканирующего электронного микроскопа высокого разрешения Hitachi S5500 с приставкой для энергодисперсионного анализа ThermoScientific.

Порошок карбида титана - размер частиц 1-5 мкм.

Толщину покрытия и размеры пор определяли по СЭМ-изображениям при помощи программного пакета CARL ZEISSS mart TIFFV1.0.0.9.

Пример 1

Пластины размером40×20×2 мм из сплава титана ВТ1-0 (%, Ti 98,6-99,7, Fe до 0,18, С до 0,07, Si до 0,1) обрабатывали в атмосфере аргона с продувкой при мощности лазерного излучения 400 Вт, перемещая луч со скоростью 20 мм/с. Травление осуществляли путем погружения в концентрированную (36,5%) азотную кислоту в течение 3 суток. Образцы отмывали от кислоты в дистиллированной воде и сушили на воздухе при 50°С.

Толщина полученного пористого покрытия 200-300 мкм. Заметный перепад толщины объясняется сложным «гребенчатым» рельефом поверхности. Размер пор в соответствии с размером частиц используемого порошка карбида титана 1-5 мкм.

Пример 2

Пластины размером 40×20×2 мм из титанового сплава ПТ-3В (%, Ti 91,4-95,0; Al 3,3-5,0; V 1,2-2,5; F до 0,2; Zr до 0,3;Si до 0,12; С до 0,1) обрабатывали в условиях примера 1, перемещая лазерный луч со скоростью 10 мм/с. Травление, промывание и сушку осуществляли аналогично примеру 1.

Толщина полученного пористого покрытия - 250-390 мкм. Размер пор 1-5 мкм.

Пример 3

Пластины из сплава титана ВТ 1-0 обрабатывали в атмосфере аргона при мощности лазерного излучения 500 Вт, перемещая луч со скоростью 20 мм/с. Травление в концентрированной азотной кислоте осуществляли в течение 7 суток. После промывания пластины сушили на воздухе при 100°С.

Толщина полученного пористого покрытия 290-375 мкм. Размер пор 1-5 мкм.

Пример 4

Пластины из титанового сплава ПТ-3В (%, Ti 91,4-95,0; Al 3,3-5,0; V 1,2-2,5; F до 0,2; Zr до 0,3; Si до 0,12; С до 0,1) обрабатывали по примеру 3, перемещая луч со скоростью 10 мм/с. Травление, промывание и сушку проводили по примеру 3.

Толщина полученного покрытия 350-500 мкм. Размер пор 1-5 мкм.


Способ получения покрытия на имплантатах из титана и его сплавов
Источник поступления информации: Роспатент

Показаны записи 121-130 из 134.
14.05.2023
№223.018.5527

Способ определения содержания сульфидов в отложениях в нефтепромысловом оборудовании

Изобретение относится к разработке и эксплуатации нефтяных месторождений. Способ предусматривает антиоксидантную обработку отобранных для анализа образцов 5-8% раствором аскорбиновой кислоты, последующую обработку взвешенной пробы 20% раствором соляной кислоты в установке для определения...
Тип: Изобретение
Номер охранного документа: 0002735372
Дата охранного документа: 30.10.2020
15.05.2023
№223.018.58b4

Центробежный обогатительно-классифицирующий аппарат

Предложенное изобретение относится к устройствам для разделения дисперсных материалов на фракции по крупности, в частности, к классификаторам с гравитационным обогащением и принудительной разгрузкой, и может найти применение в горнорудной промышленности при переработке золотосодержащих песков...
Тип: Изобретение
Номер охранного документа: 0002764714
Дата охранного документа: 19.01.2022
15.05.2023
№223.018.5936

Способ переработки сточных вод, содержащих фенол и его производные

Изобретение относится к способу очистки сточных вод от фенолов и гидроксипроизводных фенолов путем гидротермального окисления растворов в присутствии пероксида водорода. Способ характеризуется тем, что очистку проводят в реакторе проточного типа при рабочем давлении 10 МПа и температурах...
Тип: Изобретение
Номер охранного документа: 0002760130
Дата охранного документа: 22.11.2021
16.05.2023
№223.018.61cc

Способ очистки промышленных сточных вод от тяжелых металлов

Предложен способ очистки промышленных сточных вод от тяжелых металлов, включающий внесение сорбционного материала на основе оксидов железа в сточные воды с механическим перемешиванием и отделение твердого вещества от очищаемого раствора с помощью магнитных средств, где в качестве сорбционного...
Тип: Изобретение
Номер охранного документа: 0002748672
Дата охранного документа: 28.05.2021
03.06.2023
№223.018.7603

Способ очистки зольного графита

Изобретение относится к технологии получения малозольного графита, который может быть использован в качестве конструкционного материала в атомной энергетике, теплотехнике, для изготовления тиглей для плавки металлов, для получения многокомпонентного стекла, трубчатых нагревателей, а также...
Тип: Изобретение
Номер охранного документа: 0002777765
Дата охранного документа: 09.08.2022
16.06.2023
№223.018.7cbe

Способ обнаружения притока закачиваемой воды в нефтедобывающей скважине

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для обнаружения поступления в нефтедобывающую скважину закачиваемой с целью заводнения воды и определения ее относительного содержания в попутно добываемых водах и продукции упомянутой скважины. Предлагаемый...
Тип: Изобретение
Номер охранного документа: 0002743836
Дата охранного документа: 26.02.2021
16.06.2023
№223.018.7cc3

Способ определения состава отложений, образующихся в оборудовании для подготовки нефти

Изобретение относится к нефтедобывающей промышленности, в частности к исследованию химического и минерального состава отложений, образующихся в оборудовании для подготовки добытой нефти к переработке. Способ включает отбор образца, разделение его на пробы А, Б, В, Г, при этом непосредственно...
Тип: Изобретение
Номер охранного документа: 0002743783
Дата охранного документа: 25.02.2021
17.06.2023
№223.018.7dc0

Способ лечения аденокарциномы эрлиха методом лучевой терапии

Изобретение относится к области медицины, а именно онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Проводят локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным...
Тип: Изобретение
Номер охранного документа: 0002781902
Дата охранного документа: 19.10.2022
17.06.2023
№223.018.7dcf

Способ мониторинга полимеров в попутно добываемой воде нефтедобывающих скважин

Изобретение относится к нефтяной промышленности, в частности к исследованию попутно добываемой воды в процессе подготовки нефти, а именно к выделению, идентификации и количественному определению высокомолекулярных соединений, и может найти применение при проведении штатных и внеплановых работ...
Тип: Изобретение
Номер охранного документа: 0002784290
Дата охранного документа: 23.11.2022
17.06.2023
№223.018.7e3c

Способ получения защитных супергидрофобных покрытий на сплавах алюминия

Изобретение относится к получению на конструкциях и сооружениях из сплавов алюминия, преимущественно содержащих магний, защитных супергидрофобных покрытий, препятствующих контакту с коррозионной средой и образованию корки льда с высокой прочностью адгезии к поверхности конструкций. Способ...
Тип: Изобретение
Номер охранного документа: 0002771886
Дата охранного документа: 13.05.2022
Показаны записи 71-78 из 78.
16.03.2019
№219.016.e1c8

Способ изготовления ротора турбомашины

Изобретение относится к области изготовления роторов турбомашин с применением электронно-лучевой сварки. Способ включает изготовление вала ротора со стыковочной поверхностью и замковым элементом для соединения и кольцевых деталей ротора с плоскими торцевыми стыковочными поверхностями и...
Тип: Изобретение
Номер охранного документа: 0002682064
Дата охранного документа: 14.03.2019
29.06.2019
№219.017.a067

Способ ремонта шпалы

Изобретение относится к железнодорожному транспорту, в частности к ремонту железнодорожного пути. Способ ремонта шпалы заключается в удалении посторонних предметов и ржавчины из полости дюбеля шпалы. Далее выравнивают концевой фрезой поверхность поврежденного шурупа. Затем производят кернение...
Тип: Изобретение
Номер охранного документа: 0002400591
Дата охранного документа: 27.09.2010
02.10.2019
№219.017.cf84

Способ получения пигмента для термостабилизирующих покрытий

Изобретение относится к светоотражающим пигментам для применения в составе покрытий класса «солнечные отражатели», которые могут быть использованы для пассивной тепловой защиты космических аппаратов. Пигмент получают путем синтеза в автоклаве при температуре 220°С, давлении 22-23 атм в течение...
Тип: Изобретение
Номер охранного документа: 0002700607
Дата охранного документа: 18.09.2019
15.10.2019
№219.017.d5d6

Устройство для лазерной очистки корпуса судна

Изобретение относится к устройству для лазерной очистки корпуса судна. Устройство содержит контейнер с отверстием для вывода лазерного излучения и лазер. Контейнер выполнен герметичным с фокусирующей и сканирующей системой, выходное отверстие которой выполнено как щелевидный конфузор. Контейнер...
Тип: Изобретение
Номер охранного документа: 0002702884
Дата охранного документа: 11.10.2019
31.12.2020
№219.017.f45f

Способ получения композиционного материала для биорезорбируемого магниевого имплантата

Изобретение относится к способу получения материала с композиционным антикоррозионным покрытием для биосовместимых имплантатов с ограниченным сроком нахождения в организме, служащих для замены и/или регенерации поврежденных костных тканей, и может найти применение в имплантационной хирургии....
Тип: Изобретение
Номер охранного документа: 0002710597
Дата охранного документа: 30.12.2019
25.03.2020
№220.018.0fa8

Способ переработки титансодержащего минерального сырья

Изобретение относится к гидрофторидной технологии переработки титансодержащего минерального сырья, преимущественно ильменитового концентрата, и может найти применение в производстве диоксида титана пигментной чистоты, а также железооксидных пигментов. Способ включает обработку исходного...
Тип: Изобретение
Номер охранного документа: 0002717418
Дата охранного документа: 23.03.2020
31.07.2020
№220.018.3a01

Способ исследования свойств защитных покрытий в потоке морской воды и установка для его осуществления

Изобретение относится к средствам исследования свойств защитных покрытий на субстратах, подвергающихся воздействию морской среды, а именно к способам оценки противообрастающих и антикоррозийных покрытий подводной части корпуса судов, а также к установкам для их осуществления. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002728490
Дата охранного документа: 29.07.2020
17.06.2023
№223.018.7e81

Способ получения волластонита из кремнийсодержащего растительного сырья

Изобретение может быть использовано в производстве лакокрасочных и композиционных материалов. Для получения волластонита приводят во взаимодействие при активном перемешивании раствор, содержащий силикат натрия, и раствор хлорида кальция, отделяют полученный при этом осадок, содержащий...
Тип: Изобретение
Номер охранного документа: 0002770075
Дата охранного документа: 14.04.2022
+ добавить свой РИД