×
25.08.2017
217.015.caf8

Результат интеллектуальной деятельности: АДСОРБЕНТ ДЛЯ СЕРОВОДОРОДА

Вид РИД

Изобретение

№ охранного документа
0002620116
Дата охранного документа
23.05.2017
Аннотация: Изобретение относится к адсорбентам для улавливания, концентрирования и хранения сероводорода. Адсорбент содержит носитель - мезопористый силикат МСМ-41 с удельной поверхностью около 1300 м/г, на который нанесён гидроксид натрия. Количество нанесенного гидроксида натрия составляет 20-30 вес. % от общей массы адсорбента. Получен продукт с улучшенными сорбционными характеристиками. 2 пр.

Область техники

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, и может быть использовано в металлургической, химической и других отраслях промышленности, в частности к адсорбентам для улавливания и поглощения H2S в составе отходящих газов химических и металлургических производств, в биогазе, природном или попутных нефтяных газах.

Уровень техники

Адсорбенты, используемые в системах очистки от сероводорода, должны иметь большую адсорбционную способность даже при небольших концентрациях H2S в газовых смесях, обладать высокой селективностью, иметь высокую механическую прочность, обладать способностью к регенерации и иметь низкую стоимость.

На практике нашли применение следующие адсорбенты: активированные угли, силикагели, алюмогели и цеолиты.

Решение проблемы улавливания H2S поставлено в ряд наиболее приоритетных задач в связи с проблемой глобального загрязнения воздуха и охраны окружающей среды. Решение этой проблемы предусматривает значительное снижение техногенных выбросов.

Известен адсорбент (оксид алюминия) для очистки отходящих газов (Современный сухой способ очистки газов / Шулепов И.М. и др. - "Экология и пром-ть России", 1999, №6, с. 4-9). Недостатком использования Аl2О3 в качестве адсорбента является низкая эффективность очистки газов от газообразных вредных компонентов, а также высокая себестоимость процесса.

Также известно применение карбоната кальция в качестве адсорбента для очистки газов, содержащих фториды (Пат. РФ №2088314, МПК6 В01D 53/68, 1977).

Однако использование этих материалов в качестве адсорбентов для очистки газов от H2S сопряжено с рядом недостатков, заключающихся в низкой эффективности, сложности проведения процессов регенерации, что снижает эффективность процесса очистки газов и повышает его себестоимость.

Известен адсорбент для улавливания кислых газов, состоящий из носителя, с нанесенными на него олигомерами, содержащими аминогруппы, в котором в качестве носителя применена металлорганическая каркасная структура типа MOF-5, имеющая инкапсулированные олигомеры, содержащие полиэтиленамины -CH2-CH(NH2)n- типа PEPA, где значение n находится в пределах от 5 до 10 (RU 2420352, кл. B01J 20/22, опубл. 10.06.2011). Однако у этого адсорбента имеется два существенных недостатка: малая насыпная плотность (около 0,35-0,4 г/см3) и низкие стабильность и термостабильность в присутствии паров воды. В результате при достаточно высокой весовой емкости по кислым газам объемные характеристики поглотителя оказываются невелики вследствие малой насыпной плотности.

Известен мезопористый оксид магния [S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2 (2009) 796]. Однако процедура приготовления этого материала весьма сложна, поскольку для процесса нужен органический темплат и токсичный органический растворитель, и многостадийный синтез требует значительного времени [D.M. D'Alessandro, В. Smit, J.R. Long, Angew. Chem. Int. Ed. 49 (2010) 2; Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4 (2011) 42; J. Roggenbuck, M. Tiemann, J. Am. Chem. Soc. 127 (2005) 1096; J. Roggenbuck, G. Koch, M. Tiemann, Chem. Mater. 18 (2006) 4151]. Адсорбционная емкость подобных систем по кислым газам не превышает 10 вес. %.

Мезопористый MgO, модифицированный нитратом калия [А.-Т. Vu et al. Mesoporous MgO sorbent promoted with KNO3 for CO2 capture at intermediate temperatures/ Chemical Engineering Journal 258 (2014) 254-264] имеет емкость по кислым газам около 13.9 вес. %.

Известны адсорбенты на основе оксида магния, нанесенного на оксидные или углеродные носители. Оксид магния на углеродном носителе был получен карбонизацией композита, состоящего из оксида кремния, обработанного серной кислотой, триблоксополимера, сахарозы и нитрата магния [M. Bhagiyalakshmi et al. A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture/ Fuel 90 (2011) 1662-1667]. Этот адсорбент показал емкость по кислым газам на уровне 9 вес. %.

Известен мезопористый силикат типа SBA-15, модифицированный 3-аминопропил-триметоксисиланом [A. Zukal, J. Jagiello, J. Mayerov, J. Cejka, Thermodynamics of CO2 adsorption on functionalized SBA-15 silica. NLDFT analysis of surface energetic heterogeneity // Phys. Chem. Chem. Phys. 13 (2011) 15468]. Лучшая емкость по кислым газам составила 3,54 вес. % для адсорбента, содержащего наибольшее количество 3-аминопропил-триметоксисилана, а именно в количестве 2,6 ммоль на 1 г адсорбента.

Наиболее близким по существенным признакам к предлагаемому адсорбенту является адсорбент для улавливания кислых газов, представляющий собой 4 вес. % MgO на мезопористых неорганических цеолитоподобных носителях типа Al-SBA-15 [A. Zukal et al. MgO-modifîed mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption/ Microporous and Mesoporous Materials 167 (2013) 44-50], который демонстрирует хорошие адсорбционные свойства по отношению к кислым газам. Температура полной десорбции кислых газов составляла 300°С. Дополнительная модификация такой системы карбонатом калия (5 вес. %) приводит к увеличению адсорбционной емкости, которая, однако, не превышает 5 вес. % (25 см3/г).

Недостатком указанного адсорбента (мезопористого силиката типа MgO/Al-SBA-15) является низкая емкость по кислым газам. Еще одним недостатком указанных систем является достаточно высокая температура десорбции кислых газов - 300°С (стадия регенерации адсорбента).

Раскрытие изобретения

Задачей настоящего изобретения является получение адсорбента для сероводорода, обладающего увеличенной адсорбционной емкостью при одновременном снижении температуры десорбции (регенерации).

Поставленная задача решается адсорбентом для сероводорода, представляющим собой носитель, в качестве которого используется мезопористый силикат МСМ-41 с удельной поверхностью 1300 м2/г с допустимой величиной погрешности до 10% с нанесенным гидроксидом натрия, при этом количество нанесенного гидроксида натрия составляет 20-30 вес. % от общей массы адсорбента.

Техническим результатом является то, что полученный адсорбент обладает увеличенной адсорбционной емкостью, составляющей 14-18 вес. %, при этом адсорбент обладает свойством десорбции (регенерации) при температуре 100-150°С.

Таким образом, полученный адсорбент для сероводорода обладает улучшенными свойствами по улавливанию, концентрированию и хранению сероводорода.

Для увеличения адсорбционной способности предлагается адсорбент на основе МСМ-41 и гидроксида натрия, нанесенного путем влажной пропитки матрицы водным раствором гидроксида натрия. Нанесение раствора гидроксида натрия осуществляют в несколько приемов с промежуточными сушками таким образом, чтобы количество нанесенного гидроксида составляло 20-30 вес. % NaOH от общей массы адсорбента.

Осуществление изобретения

Для получения адсорбента согласно настоящему изобретению используют носитель - мезопористый силикат МСМ-41 с удельной поверхностью около 1300 м2/г и с объемом пор 1,1 см3/г с допустимой величиной погрешности до 10% от указанных параметров. (R. Schmidt, Ε. Hansen, D. Akporiaye, O.H. Ellestad, Microporous Materials, Vol.3, no. 4-5, 1995, P. 443-448). Затем носитель пропитывают водным раствором гидроксида натрия, при этом для достижения лучшего распределения раствора на носителе пропитку осуществляют в несколько приемов с промежуточными сушками. Для достижения наилучшего результата носитель пропитывают водным раствором гидроксида натрия с концентрацией от 10 до 20 вес. % в течение 15-20 мин и высушивают при комнатной температуре (20-25°С) в течение 5-6 часов до достижения состояния сухого порошка. При этом нанесение раствора осуществляют в несколько приемов с промежуточными сушками таким образом, чтобы количество нанесенного гидроксида составляло 20-30 вес. % от общей массы адсорбента. Для достижения указанного количества (до поглощения носителем всего раствора гидроксида натрия) нанесенного гидроксида натрия достаточно проведения 2-5 этапов (чередование пропитки и сушки). Количество нанесенного гидроксида натрия определяют весовым методом. После последнего высушивания полученный адсорбент нагревают в потоке инертного газа до 150°С и выдерживают до постоянного веса, приблизительно в течение 2-3 ч.

Поскольку адсорбент предназначен для улавливания, концентрирования и хранения H2S в составе отходящих газов химических и металлургических производств, в биогазе, природном или попутных нефтяных газах, для проверки адсорбционной емкости адсорбент насыщали H2S при температуре 20-30°С в течение 1 ч, продували Не и взвешивали. Количество поглощенного H2S также можно определить методом термодесорбции при 100-150°С (10 град/мин, скорость Не - 40 мл/мин ±10%) с улавливанием H2S в ловушке, охлаждаемой жидким азотом. Емкость полученного адсорбента составляет от 14 до 18 вес. % при этом адсорбент обладает свойством десорбции (регенерации) при температуре 100-150°С.

Используемый мезопористый силикат МСМ-41 с удельной поверхностью около 1300 м2/г и с объемом пор 1,1 см3/г с нанесенным гидроксидом натрия имеет достаточную площадь поверхности пор и достаточное количество нанесенного вещества для адсорбции сероводорода. Указанные параметры поверхности, объема пор и наносимого компонента действуют совместно на достижение технического результата. Количество нанесенного компонента свыше 30 вес. % от общей массы адсорбента нецелесообразно, т.к. большая часть пор будет заполнена гидроксидом натрия, что в свою очередь повлияет на адсорбционную емкость адсорбента. Нанесение гидроксида натрия в количестве менее 20 вес. % от общей массы адсорбента не позволит добиться заявленной адсорбционной емкости.

Достижение технического результата предлагаемым в настоящем изобретении адсорбентом иллюстрируется примерами.

Пример 1.

1 г воздушно-сухого адсорбента - мезопористого силиката МСМ-41 с удельной поверхностью около 1300 м2/г и с объемом пор 1,1 см3/г пропитывали 1 M водным раствором гидроксида натрия в 3 приема с промежуточными сушками таким образом, что количество нанесенного гидроксида составляло 20 вес. % NaOH, т.е. 0,2 г NaOH + 0,8 г носителя. После пропитки полученный адсорбент нагревали в потоке инертного газа до 150°С и выдерживали 2 ч (до постоянного веса). Адсорбент насыщали H2S при 30°С, продували Не и взвешивали. Количество поглощенного H2S определяли также методом термодесорбции при 100-150°С (10 град/мин, скорость Не - 40 мл/мин) с улавливанием H2S в ловушке, охлаждаемой жидким азотом. Количество поглощенного при 30°С и затем выделенного при 150°С H2S, отнесенное на 1 г сухого сорбента (0,8 г мезопористого силиката + 0,2 г NaOH) и выраженное в %, составляло 14,5 вес. %.

Пример 2.

1 г воздушно-сухого адсорбента - мезопористого силиката МСМ-41 с удельной поверхностью около 1300 м2/г и с объемом пор 1,1 см3/г пропитывали 1 M водным раствором гидроксида натрия в 4 приема с промежуточными сушками таким образом, что количество нанесенного гидроксида составляло 30 вес. % NaOH, т.е. 0,3 г NaOH + 0,7 г носителя. После пропитки полученный адсорбент нагревали в потоке инертного газа до 150°С и выдерживали 2 ч (до постоянного веса). Адсорбент насыщали H2S при 30°С, продували Не и взвешивали. Количество поглощенного H2S определяли также методом термодесорбции при 100-150°С (10 град/мин, скорость Не - 40 мл/мин) с улавливанием H2S в ловушке, охлаждаемой жидким азотом. Количество поглощенного при 30°С и затем выделенного при 150°С H2S, отнесенное на 1 г сухого сорбента (0.7 г мезопористого силиката + 0,3 г NaOH) и выраженное в %, составляло 18,2 вес. %.

Данные примеров показывают, что предлагаемый в настоящем изобретении модифицированный адсорбент в 2 раза по характеристикам емкости по H2S превосходит известные адсорбенты данного назначения и характеризуется более низкой температурой десорбции H2S.

Адсорбент для сероводорода, представляющий собой носитель с нанесенным компонентом, отличающийся тем, что в качестве носителя он содержит мезопористый силикат МСМ-41 с удельной поверхностью 1300 м/г с допустимой величиной погрешности до 10%, а в качестве нанесенного компонента - гидроксид натрия, при этом количество нанесенного гидроксида натрия составляет 20-30 вес. % от общей массы адсорбента.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 49.
10.02.2015
№216.013.2314

Адсорбент для удаления воды из газов

Изобретение относится к сорбционным технологиям, в частности к адсорбентам, используемым для осушки от воды газовых сред. Адсорбент для удаления воды из газов содержит пористую матрицу, в поры которой введено активное влагопоглощающее гигроскопическое вещество из группы галогенидов...
Тип: Изобретение
Номер охранного документа: 0002540433
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2db4

Состав адсорбента для удаления токсичных веществ из выхлопных газов автомобиля и способ его изготовления

Группа изобретений относится к адсорбентам для удаления углеводородов из выхлопных газов автомобиля в период холодного запуска двигателя внутреннего сгорания. Адсорбент представляет собой цеолит типа ZSM-5 или типа BETA, в который введен щелочной металл, выбранный из группы К, Na, Li или их...
Тип: Изобретение
Номер охранного документа: 0002543168
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.3159

Катализатор для гидроаминирования ацетиленовых углеводородов и способ гидроаминирования ацетиленовых углеводородов с использованием этого катализатора

Группа изобретений относится к области каталитических технологий переработки углеводородного сырья и касается, в частности, катализатора и способа гидроаминирования жидких ацетиленовых углеводородов аминами в ценные продукты - имины, которые при дальнейшем гидролизе приводят к образованию...
Тип: Изобретение
Номер охранного документа: 0002544101
Дата охранного документа: 10.03.2015
27.10.2015
№216.013.894c

Катализатор для гидроаминирования жидких ацетиленовых углеводородов и способ гидроаминирования жидких ацетиленовых углеводородов с использованием этого катализатора

Изобретение относится к катализатору для гидроаминирования жидких ацетиленовых углеводородов амином. Данный катализатор содержит наночастицы благородного металла на мезопористом носителе. При этом в качестве благородного металла катализатор содержит наночастицы серебра со средним размером 2-5...
Тип: Изобретение
Номер охранного документа: 0002566751
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8950

Ионные жидкости с силоксановым фрагментом в составе катиона в качестве теплоносителей

Изобретение относится к области жидких теплоносителей, в частности к новым ионным жидкостям с силоксановым фрагментом в составе катиона. Предложены ионные жидкости общей формулы (I), где R = алкил или фенил; X = 1,2-диметилимидазолий, N-метилпирролидиний или триалкиламмоний, в качестве...
Тип: Изобретение
Номер охранного документа: 0002566755
Дата охранного документа: 27.10.2015
20.01.2016
№216.013.a323

Способ переработки лигнина в жидкие углеводороды

Изобретение относится к способу переработки лигнина в жидкие продукты и касается, в частности, способа переработки гидролизного лигнина в жидкие углеводороды и может быть использовано для получения жидких углеводородов (в т.ч. кислородсодержащих) в ходе переработки отходов деревообрабатывающей...
Тип: Изобретение
Номер охранного документа: 0002573405
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a38a

Способ получения полимерного материала, содержащего неорганические нано- или микрочастицы

Изобретение относится к области химии высокомолекулярных соединений и нанотехнологиям и касается, в частности, способа получения полимерного материала, содержащего неорганические нано- или микрочастицы, который может найти применение в технике, например, в качестве: полимерных материалов с...
Тип: Изобретение
Номер охранного документа: 0002573508
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.be1b

Адсорбент для улавливания, концентрирования и хранения диоксида углерода

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода (CO) в составе отходящих газов теплоэнергетических установок, химических и металлургических производств, в...
Тип: Изобретение
Номер охранного документа: 0002576632
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c08b

Адсорбент для улавливания, концентрирования и хранения диоксида углерода

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода Адсорбент изготовлен на основе мезопористой металлорганической каркасной структуры, выбранной из структур...
Тип: Изобретение
Номер охранного документа: 0002576634
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c783

Способ получения пористых координационных полимеров mil-53

Изобретение относится к способу получения пористых координационных полимеров общей формулы MIL-53(X), где Х=Al или Cr. Способ включает смешение хлорида металла общей формулы XCl×6HO, где X имеет вышеуказанные значения, и 1,4-бензолдикарбоновой кислоты в присутствии растворителя, нагревание...
Тип: Изобретение
Номер охранного документа: 0002578600
Дата охранного документа: 27.03.2016
Показаны записи 21-30 из 211.
10.03.2015
№216.013.3159

Катализатор для гидроаминирования ацетиленовых углеводородов и способ гидроаминирования ацетиленовых углеводородов с использованием этого катализатора

Группа изобретений относится к области каталитических технологий переработки углеводородного сырья и касается, в частности, катализатора и способа гидроаминирования жидких ацетиленовых углеводородов аминами в ценные продукты - имины, которые при дальнейшем гидролизе приводят к образованию...
Тип: Изобретение
Номер охранного документа: 0002544101
Дата охранного документа: 10.03.2015
10.05.2015
№216.013.4a8b

Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии

Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности...
Тип: Изобретение
Номер охранного документа: 0002550590
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b9f

Способ синтеза сополимеров акрилонитрила с акриловой кислотой

Изобретение относится к получению сополимеров акрилонитрила, которые широко используются в производстве углеродного волокна. Способ синтеза сополимеров, содержащих мономерные звенья акрилонитрила и акриловой кислоты, включает смешение мономеров в среде растворителя с добавлением инициатора...
Тип: Изобретение
Номер охранного документа: 0002550873
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5153

Наночастицы антиоксидантного фермента супероксиддисмутазы в виде полиэлектролитного комплекса состава фермент-поликатион-полианион и способ их получения

Изобретение относится к химической энзимологии, в частности к созданию наночастиц антиоксидантного фермента супероксиддисмутазы для медицинского применения в виде полиэлектролитного комплекса типа фермент/поликатион/полианион, характеризующихся тем, что фермент покрыт внутренней оболочкой из...
Тип: Изобретение
Номер охранного документа: 0002552340
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55a7

Катализатор паровой конверсии углеводородов и способ его получения

Изобретение относится к области химии и химической технологии, а именно, к процессам переработки газообразного углеводородного сырья и получения технического водорода для химической, металлургической, автомобильной, авиационной и прочих отраслей промышленности, научных исследований, точного...
Тип: Изобретение
Номер охранного документа: 0002553457
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55aa

Катодные материалы для твердооксидных топливных элементов на основе никельсодержащих слоистых перовскитоподобных оксидов

Изобретение относится к катодному материалу для твердооксидного топливного элемента (ТОТЭ) на основе никельсодержащих перовскитоподобных слоистых оксидов. При этом в качестве перовскитоподобного оксида взято соединение с общей формулой PrSrNiCoO, где 0.0
Тип: Изобретение
Номер охранного документа: 0002553460
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5810

Способ нагрева электродов и создания самостоятельного дугового разряда с поджигом от тонкой металлической проволочки в свободном пространстве в магнитном поле

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Технический результат - возможность зажигания самостоятельного дугового разряда в открытом свободном пространстве. Между электродами при...
Тип: Изобретение
Номер охранного документа: 0002554085
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59ae

Способ определения катехоламинов и их метаболитов с использованием твердофазного флуоресцентного биосенсора

Изобретение относится к области медицины и может быть применено для определения катехоламинов их метаболитов в объектах на основе матриц сложного состава, в том числе нерастворимых в воде, без их дополнительной пробоподготовки. Способ осуществляют путем изменения принципиальной схемы...
Тип: Изобретение
Номер охранного документа: 0002554499
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59af

Способ лечения ишемического инсульта

Группа изобретений относится к медицине, а именно к неврологии, и касается лечения ишемического инсульта. Для этого осуществляют инъекционное, преимущественно внутривенное, введение убидекаренона. Такое введение препарата обеспечивает уменьшение зоны поражения ткани мозга и уменьшение...
Тип: Изобретение
Номер охранного документа: 0002554500
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a1f

Высокочастотный сверхпроводящий элемент памяти

Технический результат изобретения состоит в увеличении изменения амплитуды критического тока перехода под действием малого магнитного потока по сравнению с предыдущими геометриями, что открывает возможности для миниатюризации сверхпроводящих элементов памяти. Дополнительный технический...
Тип: Изобретение
Номер охранного документа: 0002554612
Дата охранного документа: 27.06.2015
+ добавить свой РИД