×
25.08.2017
217.015.c970

Результат интеллектуальной деятельности: Акустооптический приемник

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиоэлектронике и может использоваться для приема и спектрального анализа сложных сигналов с фазовой манипуляцией (ФМн). Технический результат состоит в расширении диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина путем использования дополнительных каналов приема. Для этого акустооптический приемник содержит приемную антенну 1, преобразователь 2 частоты, смеситель 3, гетеродин 5, первый 6 и второй 12 перемножители, первый 7 и второй 13 узкополосные фильтры, первый 8, второй 14, третий 15 и четвертый 16 амплитудные детекторы, первый 9, второй 17, третий 18 и четвертый 19 ключи, усилитель 10 первой суммарной частоты, усилитель 11 второй суммарной частоты, лазер 20, коллиматор 21, первую 22, вторую 23, третью 24 и четвертую 25 ячейки Брэгга, первую 26, вторую 27, третью 28 и четвертую 29 линзы, первую 30, вторую 31, третью 32 и четвертую 33 матрицы фотодетекторов. 2 ил.

Предлагаемый приемник относится к радиоэлектронике и может использоваться для приема и спектрального анализа сложных сигналов с фазовой модуляцией (ФМн).

Известны акустооптические приемники (авт. свид. СССР №№1.718.695, 1.758.883, 1.785.410, 1.799.226, 1.799.227, патенты РФ №№2.001.533, 2.007.046, 2.234.808, 2.291.575, 2.314.644, 2.325.761, 2.439.811; Дикарев В.И. Методы и технические решения приема и обработки радиосигналов. Учебник, Санкт-Петербург, 2000, с. 413-462 и др.).

Из известных устройств наиболее близким к предлагаемому является «Акустооптический приемник» (авт. свид. СССР №№1.758.883, Н04B 10/06, 1990), который и выбран в качестве прототипа.

Указанный приемник обеспечивает подавление ложных сигналов (помех), принимаемых по зеркальному и комбинационным каналам.

Но с точки зрения расширения диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина целесообразно не подавлять, а использовать дополнительные каналы приема, проведя соответствующую их маркировку.

Технической задачей изобретения является расширение диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина путем использования дополнительных каналов приема.

Поставленная задача решается тем, что акустооптический приемник, содержащий, в соответствии с ближайшим аналогом, лазер, на пути распространения пучка света которого последовательно установлены коллиматор и первая ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена первая линза, в фокальной плоскости которой размещена первая матрица фотодетекторов, а также последовательно включенные приемную антенну, смеситель, второй вход которого соединен с выходом гетеродина, и усилитель промежуточной частоты, последовательно подключенные к выходу приемной антенны первый перемножитель, первый узкополосный фильтр, первый амплитудный детектор и первый ключ, отличается от ближайшего аналога тем, что он снабжен усилителем первой суммарной частоты, усилителем второй суммарной частоты, вторым перемножителем, вторым узкополосным фильтром, вторым, третьим и четвертым амплитудным детекторами, вторым, третьим и четвертым ключами, второй, третьей и четвертой ячейками Брэгга, второй, третьей и четвертой линзами, второй, третьей и четвертой матрицами фотодетекторов, причем на пути распространения пучка света лазера последовательно установлены вторая, третья и четвертая ячейки Брэгга, на пути распространения дифрагированной второй, третьей и четвертой ячейками Брэгга части пучка света установлены вторая, третья и четвертая линзы соответственно, в фокальной плоскости каждой из которой размещена вторая, третья и четвертая матрица фотодетекторов соответственно, к выходу смесителя последовательно подключены усилитель первой суммарной частоты, второй амплитудный детектор и второй ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга, к выходу смесителя последовательно подключены усилитель второй суммарной частоты, третий амплитудный детектор и третий ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга, второй вход первого ключа соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга, второй вход первого перемножителя соединен с выходом усилителя промежуточной частоты, к выходу приемной антенны последовательно подключены второй перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, второй узкополосный фильтр, четвертый амплитудный детектор и четвертый ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга.

Структурная схема акустооптического приемника представлена на фиг. 1. Частотная диаграмма, иллюстрирующая преобразование сигналов по частоте, показана на фиг. 2.

Акустооптический приемник содержит последовательно включенные приемную антенну 1, смеситель 3, второй вход которого соединен с выходом гетеродина 4, усилитель 10 первой суммарной частоты, второй амплитудный детектор 14 и второй ключ 17, второй вход которого через усилитель 5 промежуточной частоты соединен с выходом смесителя 3, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга 22. К выходу смесителя 3 последовательно подключены усилитель 11 второй суммарной частоты, третий амплитудный детектор 15 и третий ключ 18, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга 23. К выходу приемной антенны 1 последовательно подключены первый перемножитель 6, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, первый узкополосный фильтр 7, первый амплитудный детектор 8 и первый ключ 9, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а вход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга 24. К выходу приемной антенны 1 последовательно подключены второй перемножитель 12, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, второй узкополосный фильтр 13, четвертый амплитудный детектор 16 и четвертый ключ 19, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга 25.

На пути распространения луча света лазера 20 последовательно установлены коллиматор 21, первая 22, вторая 23, третья 24 и четвертая 25 ячейки Брэгга. На пути распространения дифрагированного ячейкой Брэгга 22 (23, 24, 25) пучка света установлена линза 26 (27, 28, 29), в фокальной плоскости которой размещена матрица 30 (31, 32, 33) фотодетекторов.

Последовательно включенные гетеродин 4 и смеситель 3 образуют преобразователь 2 частоты.

Акустооптический приемник работает следующим образом.

Принимаемый сигнал с фазовой манипуляцией (ФМн) на частоте ωс

uc(t)=Uc⋅cos[(ωct+ϕk1(t)+ϕc], 0≤t≤Tc,

где Uc, ωс, ϕc, Tc - амплитуда, несущая частота, начальная фаза и длительность сигнала;

ϕk1(t)≈{0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M1(t), причем ϕk1(t)=const при kτэ<t<(k+1)τэ и может изменяться скачком при t=kτэ, т.е. на границах между элементарными посылками (k=1, 2, …, N-1);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тсс=N⋅τс),

с выхода приемной антенны 1 одновременно поступает на первые входы смесителя 3, первого 6 и второго 12 перемножителей. На второй вход смесителя 3 с выхода гетеродина 4 подается напряжение

uг(t)=Uг⋅cos[ωгt+ϕг],

где Uг, ωг, ϕг - амплитуда, частота и начальная фаза напряжения гетеродина.

Частота настройки ωн1 усилителя 5 промежуточной частоты выбрана равной промежуточной (разностной) частоте (фиг. 2)

ωн1пргс.

Частота настройки ωн2 усилителя 10 первой суммарной частоты выбрана равной первой суммарной частоте

ωн2Σ1сг.

Частота настройки ωн3 усилителя 11 второй суммарной частоте выбрана равной второй суммарной частоте

ωн3Σ2гз.

Частота настройки ωн4 первого 6 и второго 12 узкополосных фильтров выбрана равной второй гармонике частоты гетеродина 4

ωн4=2ωг.

На выходе смесителя 3 образуются напряжения комбинационных частот. Усилителями 5 и 10 выделяются напряжения промежуточной (разностной) и первой суммарной частот соответственно

uпр1(t)=Uпр1⋅cos[ωпрt-ϕk1(t)+ϕпр1],

uΣ1(t)=Uпр1⋅cos[ωΣ1t-ϕk1(t)+ϕΣ1], 0≤t≤Tc,

где

ωпргс - промежуточная (разностная) частота;

ωΣ1сг - первая суммарная частота;

ϕпр1гс; ϕΣ1сг.

Напряжение uΣ1(t) поступает на вход амплитудного детектора 14, где выделяется его огибающая, которая поступает на управляющий вход ключа 17, открывая его. В исходном состоянии ключи 9, 17, 18 и 19 всегда закрыты.

При этом напряжение uпр1(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 17 поступает на пьезоэлектрический преобразователь первой ячейки Брэгга 22, где происходит его преобразование в акустическое колебание. Каждая ячейка Брэгга 22 (23, 24, 25) состоит из звукопровода и возбуждающей гиперзвук пьезоэлектрической пластины, выполненной из кристалла ниобата лития соответственно X и Y-35° среза. Это обеспечивает автоматическую подстройку по углу Брэгга и работу ячейки в широком диапазоне частот.

Пучок света от лазера 20, сколлимированный коллиматором 21, проходит через ячейку Брэгга 22 и дифрагирует на акустических колебаниях, возбужденных напряжением uпр1(t). При этом следует отметить, что на каждой ячейке Брэгга дифрагирует только примерно десятая часть пучка света источника излучения.

На пути распространения дифрагируемой части пучка света установлена линза 26, в фокальной плоскости которой размещается матрица 30 фотодетекторов.

Следовательно, в фокальной плоскости линзы 30 формируется пространственный спектр принимаемого сигнала. Причем каждому разрешающему элементу анализируемого частотного диапазона соответствует свой фотодетектор.

Описанная выше работа акустооптического приемника соответствует случаю приема ФМн-сигналов по основному каналу на частоте ωс (фиг. 2).

Если ФМн-сигнал принимается по зеркальному каналу на частоте ωз

uз(t)=Uз⋅cos[ωзt+ϕk2(t)+ϕз], 0≤t≤Тз,

то усилителями 5 и 11 выделяются второе напряжение промежуточной частоты и напряжение второй суммарной частоты соответственно

uпр2(t)=Uпр2⋅cos[ωпрt-ϕk2(t)+ϕпр2],

uΣ2(t)=Uпр2⋅cos[ωΣ2t-ϕk2(t)+ϕΣ2], 0≤t≤Tз,

где

ωпрзг - промежуточная (разностная) частота;

ωΣ2гз - вторая суммарная частота;

ϕпрзг; ϕΣ2гз.

Напряжение uΣ2(t) поступает на вход амплитудного детектора 15, где выделяется его огибающая, которая поступает на управляющий вход ключа 18, открывая его.

При этом напряжение uпр2(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 18 поступает на пьезоэлектрический преобразователь второй ячейки Брэгга 23, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по зеркальному каналу на частоте ωз, анализируется в матрице 31 фотодетекторов.

Если ФМн-сигнал принимается по первому комбинационному каналу на частоте ωк1

uк1(t)=Uк1⋅cos[ωк1t+ϕk3(t)+ϕк1], 0≤t≤Tк1,

то усилителем 5 выделяется третье напряжение промежуточной частоты

uпр3(t)=Uпр3⋅cos[ωпрt+ϕk3(t)+ϕк3], 0≤t≤Tк1,

где

ωпр=2ωгк1 - промежуточная (разностная) частота;

ϕпр3гк1,

которое подается на второй вход первого перемножителя 6, на первый вход которого с выхода приемной антенны 1 поступает сигнал uк1(t), принимаемый по первому комбинационному каналу на частоте ωк1. На выходе перемножителя 6 образуются напряжения комбинационных частот. Первым узкополосным фильтром 7 выделяется гармоническое напряжение на второй гармонике частоты 2ωг гетеродина 4

u1(t)=U1⋅cos[2ωгt+ϕг], 0≤t≤Tк1,

где которое поступает на вход первого амплитудного детектора 8, где выделяется его огибающая, которая поступает на управляющий вход первого ключа 9, открывая его.

При этом напряжение uпр(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 9 поступает на пьезоэлектрический преобразователь третьей ячейки Брэгга 24, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по первому комбинационному каналу на частоте ωк1, анализируется в матрице 32 фотодетекторов.

Если ФМн-сигнал принимается по второму комбинационному каналу на частоте ωк2

uк2(t)=Uк2⋅cos[ωк2t+ϕk4(t)+ϕк2], 0≤t≤Tк2,

то усилителем 5 промежуточной частоты выделяется четвертое напряжение промежуточной частоты

uпр4(t)=Uпр4⋅cos[ωпрt+ϕk4(t)+ϕк4], 0≤t≤Tк2,

где

ωпрк2-2ωг - промежуточная (разностная) частота;

ϕпр4к2г,

которое подается на второй вход второго перемножителя 12, на первый вход которого с выхода приемной антенны 1 поступает сигнал, принимаемый по второму комбинационному каналу на частоте ωк2. На выходе перемножителя 12 образуются напряжения комбинационных частот. Вторым узкополосным фильтром 13 выделяется гармоническое напряжение на второй гармонике частоты 2ωг гетеродина 4

u2(t)=U2⋅соs[2ωгt+ϕг], 0≤t≤Tк2,

где которое поступает на вход четвертого амплитудного детектора 16, где выделяется его огибающая, которая поступает на управляющий вход четвертого ключа 19, открывая его.

При этом напряжение uпр4(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 19 поступает на пьезоэлектрический преобразователь четвертой ячейки Брэгга 33, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по второму комбинационному каналу на частоте ωк2, анализируется в матрице 33 фотодетекторов.

Таким образом, предлагаемый акустооптический приемник по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивают расширение диапазона рабочих частот в четыре раза. Это достигается использованием дополнительных каналов приема: зеркального, первого и второго комбинационных.

Акустооптический приемник, содержащий лазер, на пути распространения пучка света которого последовательно установлены коллиматор и первая ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена первая линза, в фокальной плоскости которой размещена первая матрица фотодетекторов, а также последовательно включенные приемную антенну, смеситель, второй вход которого соединен с выходом гетеродина, и усилитель промежуточной частоты, последовательно подключенные к выходу приемной антенны первый перемножитель, первый узкополосный фильтр, первый амплитудный детектор и первый ключ, отличающийся тем, что он снабжен усилителем первой суммарной частоты, усилителем второй суммарной частоты, вторым перемножителем, вторым узкополосным фильтром, вторым, третьим и четвертым амплитудными детекторами, вторым, третьим и четвертым ключами, второй, третьей и четвертой ячейками Брэгга, второй, третьей и четвертой линзами, второй, третьей и четвертой матрицами фотодетекторов, причем на пути распространения пучка света последовательно установлены вторая, третья и четвертая ячейки Брэгга, на пути распространения дифрагированной второй, третьей и четвертой ячейками Брэгга части пучка света установлены вторая, третья и четвертая линза соответственно, в фокальной плоскости каждой из которой размещена вторая, третья и четвертая матрица фотодетекторов соответственно, к выходу смесителя последовательно подключены усилитель первой суммарной частоты, второй амплитудный детектор и второй ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга, к выходу смесителя последовательно подключены усилитель второй суммарной частоты, третий амплитудный детектор и третий ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга, второй вход первого ключа соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга, второй вход первого перемножителя соединен с выходом усилителя промежуточной частоты, к выходу приемной антенны последовательно подключены второй перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, второй узкополосный фильтр, четвертый амплитудный детектор и четвертый ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга.
Акустооптический приемник
Акустооптический приемник
Источник поступления информации: Роспатент

Показаны записи 241-250 из 761.
20.11.2015
№216.013.9118

Автоматический органичитель степени сжатия дожимающего компрессора плунжерного типа

Изобретение относится к области автоматизации и касается газозарядных компрессорных станций. Автоматический ограничитель степени сжатия дожимающего компрессора содержит блок отслеживания соотношений давлений всасывания и нагнетания, который выполнен в корпусе с двумя парами...
Тип: Изобретение
Номер охранного документа: 0002568760
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92ce

Устройство преобразования энергии магнитного поля ферромагнитного сердечника в тепловую или электрическую энергию

Изобретение относится к области электротехники и может быть использовано в автономных системах освещения, обогрева и т.п. Устройство содержит источник электрического тока в виде аккумуляторной батареи, генератор постоянного по направлению и линейно меняющегося во времени пилообразного тока...
Тип: Изобретение
Номер охранного документа: 0002569200
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92d4

Устройство для определения показателей качества применяемых топлив и масел в баках систем силовой установки и трансмиссии военной гусеничной машины

Устройство содержит пульт управления (21), дисплей (22), блок определения показателей качества топлива и масел (23), электронно-вычислительный блок, блок датчиков (8), расположенный в топливном баке (7), блок датчиков (2), расположенных в масляном баке двигателя (1), блок датчиков (17),...
Тип: Изобретение
Номер охранного документа: 0002569206
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9530

Способ пространственно-временной обработки изображений на основе матриц фоточувствительных приборов с зарядовой связью

Изобретение относится к телевидению и может быть использовано для пространственно-временной обработки изображений. Техническим результатом изобретения является обеспечение адаптации к уровню освещенности без каких-либо ограничений на значения отсчетов импульсной характеристики при выделении...
Тип: Изобретение
Номер охранного документа: 0002569811
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9654

Устройство для измерения коэффициента усиления антенн в натурных условиях

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Устройство содержит генератор сигналов, измеритель мощности, первый...
Тип: Изобретение
Номер охранного документа: 0002570104
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98cb

Транспортное средство для вытаскивания застрявших и аварийных автомобилей

Изобретение относится к автомобильному транспорту, а именно к транспортным средствам для вытаскивания застрявших и аварийных автомобилей, а также эвакуационных машин. Транспортное средство для вытаскивания застрявших и аварийных автомобилей содержит надрамник (2) со стойкой и тяговой лебедкой...
Тип: Изобретение
Номер охранного документа: 0002570735
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9a5a

Торпедный дисковый вентильный электродвигатель

Изобретение относится к области боеприпасов. Торпедный дисковый вентильный электродвигатель содержит последовательно сочлененные дисковые вентильные электрические двигательные модули, выполненные в виде неподвижного статора с закрепленными по окружности П-образными сердечниками и роторов с...
Тип: Изобретение
Номер охранного документа: 0002571139
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a63

Способ обнаружения, идентификации и определения скорости движения транспортного средства.

Изобретение относится к способу обнаружения, идентификации и определения скорости движения транспортного средства. Зондирующий радиосигнал излучают в направлении транспортного средства, принимают ответный сигнал и определяют скорость путем измерения доплеровского смещения частоты. Для этого на...
Тип: Изобретение
Номер охранного документа: 0002571148
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9bd3

Кольцевая антенна

Изобретение относится к области антенно-фидерных устройств и может быть использовано для обеспечения устойчивой радиосвязи стационарных и подвижных объектов в любом азимутальном направлении. Технический результат - расширение диапазонных свойств антенны в горизонтальной плоскости и обеспечение...
Тип: Изобретение
Номер охранного документа: 0002571516
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9d5e

Способ каскадно-конвейерного аналого-цифрового преобразования

Изобретение относится к аналого-цифровому преобразованию и может быть использовано при построении аналого-цифровых преобразователей для высокоточных исследований быстропротекающих процессов. Техническим результатом является повышение точности и сокращение времени аналого-цифрового...
Тип: Изобретение
Номер охранного документа: 0002571916
Дата охранного документа: 27.12.2015
Показаны записи 241-250 из 535.
20.12.2015
№216.013.9a63

Способ обнаружения, идентификации и определения скорости движения транспортного средства.

Изобретение относится к способу обнаружения, идентификации и определения скорости движения транспортного средства. Зондирующий радиосигнал излучают в направлении транспортного средства, принимают ответный сигнал и определяют скорость путем измерения доплеровского смещения частоты. Для этого на...
Тип: Изобретение
Номер охранного документа: 0002571148
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9bd3

Кольцевая антенна

Изобретение относится к области антенно-фидерных устройств и может быть использовано для обеспечения устойчивой радиосвязи стационарных и подвижных объектов в любом азимутальном направлении. Технический результат - расширение диапазонных свойств антенны в горизонтальной плоскости и обеспечение...
Тип: Изобретение
Номер охранного документа: 0002571516
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9d5e

Способ каскадно-конвейерного аналого-цифрового преобразования

Изобретение относится к аналого-цифровому преобразованию и может быть использовано при построении аналого-цифровых преобразователей для высокоточных исследований быстропротекающих процессов. Техническим результатом является повышение точности и сокращение времени аналого-цифрового...
Тип: Изобретение
Номер охранного документа: 0002571916
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e8c

Опорно-поворотное устройство преимущественно телескопа

Изобретение относится к оптическому приборостроению и может быть использовано для больших телескопов с альт-азимутальной монтировкой. Опорно-поворотное устройство (ОПУ) содержит основание, вилку с полым штырем, установленную на основании с возможностью поворота относительно азимутальной оси,...
Тип: Изобретение
Номер охранного документа: 0002572218
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f37

Способ управления автономной системой электропитания космического аппарата

Предполагаемое изобретение относится к электротехнике, а именно к автономным системам электропитания (СЭП) космических аппаратов (КА), использующим в качестве первичных источников энергии батареи фотоэлектрические (БФ), а в качестве накопителей энергии - аккумуляторные батареи (АБ). Задачей...
Тип: Изобретение
Номер охранного документа: 0002572396
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a295

Способ помехоустойчивого кодирования речевых сигналов в цифровой системе радиосвязи

Изобретение относится к области электросвязи и может быть использовано для построения систем радиосвязи. Технический результат - исключение увеличения информационной скорости цифрового канала радиосвязи. Способ помехоустойчивого преобразования речевых сигналов в цифровой системе радиосвязи...
Тип: Изобретение
Номер охранного документа: 0002573263
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a2bf

Способ обнаружения пожарной опасности в отсеке подводной лодки

Изобретение относится к области судостроения, конкретнее - к автоматизации процессов обнаружения пожарной опасности на подводных лодках. Осуществляют контроль процентного содержания кислорода в воздушной среде отсека подводной лодки и при повышении процентного содержания кислорода выше...
Тип: Изобретение
Номер охранного документа: 0002573305
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bcbe

Устройство для генерации шаровой молнии

Изобретение относится к области электротехники, конкретно к плазменным источникам электрической энергии, использующим воду и/или дымовые (СО - 80%) газы в качестве рабочего вещества. Устройство для генерации шаровой молнии содержит электроразрядную камеру и устройство активации рабочего...
Тип: Изобретение
Номер охранного документа: 0002573820
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bd3e

Устройство для определения частоты, вида модуляции и манипуляции принимаемых сигналов

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты и вида модуляции сигналов, принимаемых в заданном диапазоне частот. Технической задачей изобретения является расширение функциональных возможностей устройства путем...
Тип: Изобретение
Номер охранного документа: 0002573718
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bfa9

Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления

Изобретения относятся к приборостроению, в частности к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного отслеживания состояния конструкций. Способ заключается в опросе датчиков, установленных на сооружениях, и обработке данных на компьютере, со сравнением с...
Тип: Изобретение
Номер охранного документа: 0002576548
Дата охранного документа: 10.03.2016
+ добавить свой РИД