×
25.08.2017
217.015.c703

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА ДИОКСИДА ТИТАНА СО СТРУКТУРОЙ РУТИЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к неорганической химии и может быть использовано при изготовлении керамических материалов, сегнетоэлектриков, наполнителей лакокрасочных и полимерных материалов. Способ получения нанодисперсного рутильного диоксида титана включает осаждение его из раствора, содержащего хлорид титана, и одновременную нейтрализацию 25%-ным водным раствором аммиака. Нейтрализацию осуществляют при мольном соотношении хлорида титана (IV) к гидроксиду аммония 1:(1,3-1,8). Раствор хлорида титана (IV) приливают к водному раствору аммиака без перемешивания. Суспензию выдерживают не менее 0,5 ч. Осадок промывают методом декантации до полного отмывания примесей и достижения удельного электрического сопротивления суспензии диоксида титана не менее 1⋅10 Ом⋅см. Отмытую суспензию сушат при комнатной температуре. Затем проводят термообработку порошка при 100-200°С. Изобретение позволяет упростить получение нанодисперсного порошка диоксида титана со структурой рутила, снизить температуру термообработки. 2 ил., 1 табл.

Изобретение относится к неорганической химии, а именно к получению соединений титана, которые могут быть использованы при изготовлении керамических материалов, сегнетоэлектриков, в качестве наполнителя в лакокрасочных и полимерных материалах.

Известен способ получения диоксида титана рутильной модификации [RU 2281913 С2, МПК C01G 23/053, опубл. 20.08.2006], который включает термогидролиз раствора тетрахлорида титана с получением суспензии TiO2 с концентрацией 60-70 г/дм3, содержащей титановые зародыши и полиакриламид в количестве 100-120 г на 1 кг ТiO2 в исходном растворе, в течение 1,5-2 ч. Полученный гидроксид титана отделяют от фильтрата, обрабатывают 2-3%-ным раствором щавелевой кислоты, промывают дистиллированной водой и подвергают сушке и прокаливанию при температуре 550-650°С.

Недостатком известного способа является недостаточная чистота полученного диоксида титана из-за использования органических соединений, высокие энергозатраты на проведение температурной обработки, а также невозможность получения нанодисперсного диоксида титана.

Известен способ получения диоксида титана [RU 2472707 C1, МПК C01G 23/053, В82В 1/00, B82Y 99/00, опубл. 20.01.2013], который включает гидролиз раствора тетрахлорида титана и нейтрализацию соляной кислоты водной суспензией гидроксида кальция при перемешивании, отделение осадка от раствора, промывку, сушку и прокаливание осадка. Размер частиц гидроксида кальция в суспензии, подаваемой в реактор на гидролиз, составляет не более 3 мкм, а концентрацию тетрахлорида титана поддерживают не более 2%. После гидролиза из суспензии выделяют в качестве целевого продукта мелкую фракцию, а крупную фракцию возвращают в реактор. Промывку целевого продукта проводят после стадии прокаливания гидроксида титана чистой соляной кислотой при рН 1-2, а затем повторно сушат продукт.

Недостатком такого способа является использование соляной кислоты, многостадийность, что технически усложняет процесс.

Известен способ получения рутильного диоксида титана [RU 2171228 С2, МПК7 C01G 23/053, C01G 23/08, опубл. 27.07.2001], который включает гидролиз водного раствора сульфата титана в присутствии зародышей из диоксида титана для образования водного оксида титана и прокаливание водного оксида титана, который образуется в рутильной кристаллической форме после нагревания до 950°С со скоростью 1°С в минуту, нагрев проводят до тех пор, пока не получают диоксид титана, в котором по крайней мере 99,5 мас.% находятся в рутильной кристаллической структуре.

Недостатками этого способа являются высокие энергозатраты - нагрев проводят до 950°С и со скоростью 1°С в минуту в течение неопределенного времени до достижения 99,5 мас.% содержания рутильной фазы в образце.

Известен способ получения диоксида титана со структурой рутила [SU 1795958 A3, МПК5 C01G 23/053, опубл. 15.02.93], выбранный в качестве прототипа, включающий осаждение диоксида титана из раствора, содержащего хлорид титана (III), 25%-ным водным раствором аммиака, фильтрование, промывку, сушку, термообработку. Для увеличения удельной поверхности осаждение проводят из солянокислого раствора, полученного растворением металлического титана в избытке соляной кислоты в атмосфере водорода при рН 4-7, термообработку ведут при 250-400°С.

Недостатками такого способа является использование дорогостоящего металлического титана и проведение синтеза диоксида титана в атмосфере водорода, что повышает требования к технике безопасности ведения работ.

Задачей изобретения является получение нанодисперсного порошка диоксида титана со структурой рутила.

Предлагаемый способ получения нанодисперсного рутильного диоксида титана, также как в прототипе, включает осаждение его из раствора, содержащего хлорид титана, и одновременную нейтрализацию 25%-ным водным раствором аммиака, промывку, сушку, термообработку.

В отличие от прототипа, нейтрализацию осуществляют при мольном соотношении хлорида титана (IV) к гидроксиду аммония 1:(1,3-1,8), причем раствор хлорида титана (IV) приливают к водному раствору аммиака без перемешивания, суспензию выдерживают не менее 0,5 ч, проводят промывку осадка методом декантации до полного отмывания примесей и достижения удельного электрического сопротивления суспензии диоксида титана не менее 1⋅105 Ом⋅см. Отмытую суспензию сушат при комнатной температуре, а затем термообработку порошка оксида титана (IV) проводят при 100-200°С.

Таким образом, предлагаемый способ получения нанодисперсного диоксида титана со структурой рутила обеспечивает по сравнению с прототипом следующие преимущества: снижение температуры термообработки с 400-250 до 200-100°С, упрощение способа за счет уменьшения числа компонентов и числа операций в процессе синтеза.

На фиг. 1 представлены результаты рентгенофазового анализа образца, полученного при соотношении хлорида титана (IV) к гидроксиду аммония 1:1,5, времени выдержки суспензии 0,5 ч, высушенного при комнатной температуре.

На фиг. 2 представлены результаты рентгенофазового анализа образца, полученного при соотношении хлорида титана (IV) к гидроксиду аммония 1:1,5, времени выдержки суспензии 0,5 ч, после прогрева образца при 200°С.

В таблице 1 приведены результаты примеров реализации предложенного способа получения нанодисперсного порошка диоксида титана со структурой рутила.

К 1 л TiCl4 в химическом реакторе прибавляли 25%-ный водный раствор аммиака без перемешивания суспензии до достижения соотношения тетрахлорида титана к гидроксиду аммония 1:1,5. Суспензию выдерживали 0,5 ч и проводили промывку осадка гидратированного диоксида титана методом декантации до полного отмывания примесей и достижения удельного электрического сопротивления суспензии диоксида титана не менее 1⋅105 Ом⋅см, которое измеряли с помощью электроприбора К4570/1Ц с мегаомметрической приставкой МП4579. Отмытую суспензию высушивали при комнатной температуре. Площадь удельной поверхности полученных образцов, которую определяли с помощью автоматического газоадсорбционного анализатора TriStar II, составила 130 м2/г. Согласно рентгенофазовому анализу, проведенному с помощью дифрактометра Дифрей-401 (фиг. 1), образцы представлены аморфизированной фазой рутила. После прогрева этих образцов в муфельной печи до 200°С площадь удельной поверхности возросла до 165 м2/г, при этом во время прогрева прошла кристаллизация фазы рутила (фиг. 2). Среднеповерхностный диаметр частиц , соответствующий полученной площади удельной площади поверхности, который рассчитывали по формуле

где ρ - плотность вещества, г/см3;

S - площадь удельной поверхности, м2/г,

составил 7,9 нм.

Результаты рентгенофазового анализа и площади удельной поверхности образцов, полученных при различных соотношениях хлорида титана (IV) к гидроксиду аммония, температурах обработки и времени выдержки представлены в таблице 1.

Согласно полученным результатам, фаза рутила в полученном продукте образуется при мольном соотношении хлорида титана (IV) к гидроксиду аммония 1:(1,3-1,8). При мольном соотношении меньше, чем 1:1,3 в полученном продукте, присутствует фаза анатаза; при мольном соотношении больше, чем 1:1,8, происходит укрупнение частиц диоксида титана, полученный продукт не является нанодисперсным.

Время выдержки суспензии менее 0.5 ч приводит к стабилизации рентгеноаморфного диоксида титана, т.е. неокристаллизованного продукта, что ухудшает качество продукции.

Удельное электрическое сопротивление суспензии диоксида титана менее 1⋅105 Ом⋅см свидетельствует о наличии примесей и приводит к снижению диэлектрических свойств изделий из диоксида титана структуры рутила: рутил с минимальным содержанием примесей дороже на мировом рынке.

При температуре обработки менее 100°С в продукте остается даже слабосвязанная вода как вредная примесь при изготовлении керамических изделий, а также низкая температура способствует стабилизации рентгеноаморфных продуктов, ухудшающих качество продукции.

При температуре обработки более 200°С происходит снижение среднечислового диаметра частиц, что приводит к укрупнению частиц диоксида титана, т.е. он становится не нанодисперсным, хуже по параметрам.

Температура обработки 100-200°С является оптимальной для получения нанодисперсного порошка структуры рутила: порошок не содержит примесей воды и не содержит рентгеноаморфного продукта, в то же время остается нанодисперсным.

Способ получения нанодисперсного рутильного диоксида титана, включающий осаждение его из раствора, содержащего хлорид титана, и одновременную нейтрализацию 25%-ным водным раствором аммиака, промывку, сушку, термообработку, отличающийся тем, что нейтрализацию осуществляют при мольном соотношении хлорида титана (IV) к гидроксиду аммония 1:(1,3-1,8), причем раствор хлорида титана (IV) приливают к водному раствору аммиака без перемешивания, суспензию выдерживают не менее 0,5 ч, проводят промывку осадка методом декантации до полного отмывания примесей и достижения удельного электрического сопротивления суспензии диоксида титана не менее 1⋅10 Ом⋅см, отмытую суспензию сушат при комнатной температуре, а затем термообработку порошка оксида титана (IV) проводят при 100-200°C.
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА ДИОКСИДА ТИТАНА СО СТРУКТУРОЙ РУТИЛА
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА ДИОКСИДА ТИТАНА СО СТРУКТУРОЙ РУТИЛА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 262.
25.08.2017
№217.015.b6bc

Формирователь электрического воздействия на вязкость потока нефти

Изобретение относится к формирователю электрического воздействия на вязкость потока нефти, содержащему электролизер с пластографитовыми электродами. Формирователь характеризуется тем, что содержит два триггера, которые последовательно соединены между собой и подключены «на землю», объединенным...
Тип: Изобретение
Номер охранного документа: 0002614757
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.bc85

Способ получения модифицированной нефтеполимерной смолы

Изобретение относится к технологии полимеров, а именно к способу получения нефтеполимерных смол, применяемых в качестве пленкообразующих для получения лакокрасочных материалов. Описан способ получения модифицированной нефтеполимерной смолы сополимеризацией непредельных соединений фракции жидких...
Тип: Изобретение
Номер охранного документа: 0002616187
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.bd8f

Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к аналитической. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, заключается в том, что проводят модифицирование графитовых электродов коллоидными...
Тип: Изобретение
Номер охранного документа: 0002616339
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.be1a

Камера сгорания теплогенератора

Изобретение относится к устройствам получения тепла за счет сжигания жидких отходов углеводородного состава. Технический результат - повышение эффективности горения. Камера сгорания теплогенератора содержит корпус в виде стального цилиндра, верх которого накрыт металлической сеткой и сопряжен...
Тип: Изобретение
Номер охранного документа: 0002616962
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf65

Система раннего обнаружения и определения типа лесного пожара

Изобретение относится к области предупреждения пожаров при возгораниях на больших площадях и может быть использовано для раннего обнаружения и определения типа лесного пожара (низовой, верховой). Система раннего обнаружения и определения типа лесного пожара содержит n датчиков, каждый их...
Тип: Изобретение
Номер охранного документа: 0002617138
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bf6c

Способ получения электроизоляционной композиции

Изобретение относится к кабельной промышленности и может быть использовано при изготовлении изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении. Для получения электроизоляционной композиции смешивают полиолефин - полиэтилен высокого давления,...
Тип: Изобретение
Номер охранного документа: 0002617165
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfa2

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002617137
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c05c

Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98

Изобретение относится к области радиохимии, в частности к способу получения технеция-99m для медицины. Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98 включает обработку оксида алюминия кислотой до полного прекращения ее взаимодействия с...
Тип: Изобретение
Номер охранного документа: 0002616669
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c6c3

Способ идентификации переменного тока в проводнике с помощью замыкающего геркона

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для построения дифференциально-фазных защит. Способ идентификации переменного тока в проводнике с помощью замыкающего геркона, заключающийся в том, что геркон устанавливают вблизи проводника,...
Тип: Изобретение
Номер охранного документа: 0002618795
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c7c6

Тиристорный преобразователь частоты

Изобретение относится к преобразовательной технике и может быть использовано в качестве источника питания обмоток двухфазных асинхронных двигателей, для индукционного нагрева поверхности металла, для питания тигельных печей, для сварки металлоконструкций и изделий. Тиристорный преобразователь...
Тип: Изобретение
Номер охранного документа: 0002619079
Дата охранного документа: 11.05.2017
Показаны записи 71-80 из 154.
25.08.2017
№217.015.be1a

Камера сгорания теплогенератора

Изобретение относится к устройствам получения тепла за счет сжигания жидких отходов углеводородного состава. Технический результат - повышение эффективности горения. Камера сгорания теплогенератора содержит корпус в виде стального цилиндра, верх которого накрыт металлической сеткой и сопряжен...
Тип: Изобретение
Номер охранного документа: 0002616962
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf65

Система раннего обнаружения и определения типа лесного пожара

Изобретение относится к области предупреждения пожаров при возгораниях на больших площадях и может быть использовано для раннего обнаружения и определения типа лесного пожара (низовой, верховой). Система раннего обнаружения и определения типа лесного пожара содержит n датчиков, каждый их...
Тип: Изобретение
Номер охранного документа: 0002617138
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bf6c

Способ получения электроизоляционной композиции

Изобретение относится к кабельной промышленности и может быть использовано при изготовлении изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении. Для получения электроизоляционной композиции смешивают полиолефин - полиэтилен высокого давления,...
Тип: Изобретение
Номер охранного документа: 0002617165
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfa2

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002617137
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c05c

Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98

Изобретение относится к области радиохимии, в частности к способу получения технеция-99m для медицины. Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98 включает обработку оксида алюминия кислотой до полного прекращения ее взаимодействия с...
Тип: Изобретение
Номер охранного документа: 0002616669
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c6c3

Способ идентификации переменного тока в проводнике с помощью замыкающего геркона

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для построения дифференциально-фазных защит. Способ идентификации переменного тока в проводнике с помощью замыкающего геркона, заключающийся в том, что геркон устанавливают вблизи проводника,...
Тип: Изобретение
Номер охранного документа: 0002618795
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c7c6

Тиристорный преобразователь частоты

Изобретение относится к преобразовательной технике и может быть использовано в качестве источника питания обмоток двухфазных асинхронных двигателей, для индукционного нагрева поверхности металла, для питания тигельных печей, для сварки металлоконструкций и изделий. Тиристорный преобразователь...
Тип: Изобретение
Номер охранного документа: 0002619079
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c902

Устройство для определения содержания феррита в материале

Изобретение относится к измерительной технике, а именно к испытаниям магнитных материалов, и может быть использовано для определения содержания феррита в материале, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002619310
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cb77

Способ вскрытия монацитового концентрата

Изобретение относится к извлечению редкоземельных металлов и тория из фосфатных руд и концентратов, в частности монацита. Вскрытие монацита проводят фосфорной кислотой при температуре от 300 до 550°С, в течение 1-2 часов. Растворение образовавшегося плава осуществляют раствором фосфорной...
Тип: Изобретение
Номер охранного документа: 0002620229
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cd4e

Устройство управления тиратроном с холодным катодом

Изобретение относится к высоковольтной импульсной технике и предназначено для управления тиратроном с холодным катодом серии ТДИ путем формирования импульсов поджига с нормированной крутизной фронта и следующих с высокой частотой следования импульсов. Устройство управления включает повышающий...
Тип: Изобретение
Номер охранного документа: 0002619779
Дата охранного документа: 18.05.2017
+ добавить свой РИД