×
25.08.2017
217.015.c5a6

Результат интеллектуальной деятельности: Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период

Вид РИД

Изобретение

Аннотация: Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях. Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включает измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения. При этом в течение суток при наличии градиента (t) наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента. Затем учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи. Техническим результатом является расширение диапазона определения теплофизических характеристик ограждающих конструкций. 8 ил.

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях.

Известен способ определения сопротивления теплопередачи ограждающих конструкций ГОСТ 26254-84 «Здания и сооружения».

Недостатком способа является то, что по этой методике предполагается, что стационарный процесс теплопередачи может наступить через 1,5-7,5 суток. Однако на практике при проведении длительных теплофизических экспериментальных исследований результаты эксперимента показывают, что добиться стационарных условий теплопередачи в реальных климатических условиях практически невозможно. Например, разница tн в дневное и ночное время может достигать более 20 градусов. Это создает нестационарные условия теплопередачи и полученные теплофизические характеристики не могут считаться объективными.

Известен способ, которым определяют локальные термические сопротивления обследуемых участков при нестационарном режиме теплопередачи (см. патент №2219534, МПК G01N 25/72, от 12.09.02). Согласно известному способу определяют временной интервал, необходимый и достаточный для получения достоверного результата. В течение всего временного интервала измеряют периодически температуру и плотность теплового потока на наружной и внутренней поверхностях объекта. Задают произвольно и многократно значение теплопроводности нужного слоя. Используя разработанную обобщенную физико-математическую модель теплового неразрушающего контроля многослойных объектов с неоднородностями и заданное значение теплопроводности, рассчитывают для каждого заданного значения теплопроводности теоретически возможную температуру и плотность теплового потока соответственно наружной и внутренней поверхностей, проводят мгновенное тепловизионное обследование и измеряют температуры и плотности тепловых потоков соответственно на внутренней и наружной поверхностях. Сравнивают теоретически возможные значения с измеренными. Выбирают для дальнейших расчетов то значение теплопроводности из числа заданных, которое смогло обеспечить условия сравнения.

Известен способ, в котором определяют термическое сопротивление при нестационарном режиме теплопередачи (см. патент РФ №2316760, МПК G01N 25/72, от 22.08.05).

Согласно известному способу выделяют не менее двух термически однородных зон на термограмме внутренней поверхности объекта. На выделенных участках измеряют и рассчитывают температуры их наружной и внутренней поверхностей при задаваемых значениях теплопроводности (λ). Сравнивают эти температуры в одной системе координат. Задают погрешность между сравниваемыми температурами δ±8,5%. Определяют временные интервалы и на выбранных временных интервалах вычисляют коэффициент теплоотдачи (α). Выбирают значения теплопроводности (λ), при которых α=α+Δα. Определяют термическое сопротивление всех участков с аномалиями температурного поля и соответственно сопротивление теплопередаче этих участков и приведенное сопротивление теплопередаче многослойного объекта.

Прототипом является патент РФ №2383008, МПК G01N 25/18, от 19.12.08, позволяющий определить состояние конструкций и их теплопотери при исследовании нестационарных процессов. Известный способ включает измерение средних значений температуры и теплового потока на наружной и внутренней поверхностях в течение нескольких интервалов времени, последовательное изменение величины и начальных значений временных интервалов, фиксацию тех временных интервалов и измеренных средних значений температуры и теплового потока, в которых данные величины отличаются на величину, не превышающую величину заранее заданной погрешности, и определение сопротивления теплопередачи контролируемого участка и определение термического сопротивления по всей поверхности исследуемого объекта.

Известные способы универсальны, однако широкое применение на практике сдерживается рядом обстоятельств, которые заключаются в следующем:

- имеется существенная нелинейная зависимость точности получаемых результатов от погрешности входных данных - результатов первичных измерений. Также для измерений требуется соблюдение специальных климатических условий.

Недостатком прототипа является тот факт, что в изобретении производят моделирование нестационарной теплопередачи путем изменения температур на внутренней и наружной поверхности исследуемой ограждающей конструкции, что не может отразить всех реальных теплофизических процессов, происходящих в толще исследуемого ограждения, с учетом реальных погодных условий, и не позволяет объективно провести оценку теплозащитных качеств ограждающей конструкции.

Техническим результатом является расширение диапазона определения теплофизических характеристик ограждающих конструкций.

Технический результат достигается тем, что способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включающий измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения. Согласно изобретению в течение суток при наличии градиента (t) наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента, при этом учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи.

Предлагаемый способ поясняется чертежами:

На фиг. 1. приведен суточный график изменения температур по толщине наружной стены здания 3 корпуса ПГТУ, расположенного по адресу г. Йошкар-Ола, ул. Панфилова д. 17, с квазистационарными условиями теплопередачи.

Квазистационарными являются такие изменения характеристик среды, при которых параметры объекта можно описать стационарными уравнениями, например

где: ΔΤ=ΤBH - разность температур на соответствующих поверхностях участка;

q - плотность теплового потока;

R - термическое сопротивление участка.

В предельном случае малости изменений характеристик среды возникает стационарность - неизменность теплового состояния объекта. Их слабые изменения - это квазистационарность.

Определяя границы зон с квазистационарными условиями теплопередачи, температуры на границах, тепловой поток. Определим R0 по формуле (1).

По фигурам 1-8 видно, как в течение суток зона смещается от наружной поверхности к внутренней поверхности ограждения. Это обусловлено характером изменения tн в дневное, ночное время от 4°С до 16°С. Физический эффект возникновения в толще стены зон с квазистационарными условиями теплопередачи позволяет решить задачу определения Roфакт. Выбор наиболее продолжительных временных зон с квазистационарными условиями теплопередачи снизит погрешность и даст более объективные значение Roфакт, что видно в формуле (2) и на фигуре 2.

На фиг. 2. Расположение термопар по толщине наружной стены здания 3 корпуса ПГТУ, расположенного по адресу г. Йошкар-Ола, ул. Панфилова д. 17, с квазистационарными условиями теплопередачи.

t3, t5 - постоянные значения температуры в течение промежутка времени ΔT;

Q - величина теплового потока;

Значения Rофакт находятся в прямопропорциональной зависимости от δ толщины ограждения. Если принять допущение, что величина Q теплового потока при прохождении через стену не меняет своего значения, то, определив процентное соотношение δ толщины зоны с квазистационарными условиями теплопередачи по всей толщине, можем определить Rофакт всей стены.

На фиг. 3 показано сечение 1-1. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 0:30 до 2:00.

На фиг. 4 показано сечение 2-2. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 3:00 до 4:00.

На фиг. 5 показано сечение 3-3. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 4:00 до 6:00.

На фиг. 6 показано сечение 4-4. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 7:00 до 9:00.

На фиг. 7 показано сечение 5-5. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 9:30 до 10:00.

На фиг. 8 показано сечение 6-6. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 10:30 до 12:00.

Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включающий измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения, отличающийся тем, что в течение суток при наличии градиента наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента, при этом учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи.
Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период
Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период
Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период
Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период
Источник поступления информации: Роспатент

Показаны записи 151-152 из 152.
10.05.2018
№218.016.3854

Способ отбора проб для анализа почвы на прибрежной пойме

Изобретение относится к контролю качества и экологической безопасности почвы и почвенного покрова на изучаемой территории водозащитной полосы прибрежного ландшафта малой реки. Для этого собирают пробы для анализа почвы на прибрежной пойме. Способ включает определение места отбора проб почвы,...
Тип: Изобретение
Номер охранного документа: 0002646815
Дата охранного документа: 07.03.2018
09.06.2018
№218.016.5b2a

Ленточнопильный станок для продольной распиловки лесоматериалов

Изобретение относится к деревообрабатывающей промышленности, в частности к станкам для продольной распиловки лесоматериалов. Ленточнопильный станок включает пильный блок, раму, механизм зажима, механизм подачи. Пильный блок установлен на раме, образованной вертикальными опорами и верхней...
Тип: Изобретение
Номер охранного документа: 0002655769
Дата охранного документа: 29.05.2018
Показаны записи 161-170 из 209.
13.01.2017
№217.015.7709

Способ получения песчаного асфальтобетона

Изобретение относится к дорожному строительству, а именно к технологии приготовления асфальтобетонных смесей для устройства верхнего и нижнего слоев покрытий дорожных одежд автомобильных дорог, велосипедных дорожек, тротуаров и площадок. Способ включает приготовление смеси, состоящей из, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002599658
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7b94

Способ получения водорастворимых олигосахаридов

Изобретение относится к пищевой промышленности. Способ получения водорастворимых олигосахаридов из опилок древесины лиственных пород деревьев включает экстрагирование олигосахаридов при температуре 170°С, отделение фильтрованием от опилок и центрифугирование. Экстрагирование растительного сырья...
Тип: Изобретение
Номер охранного документа: 0002600133
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8061

Способ оценки видового разнообразия травы по наличию отдельных видов растений на пробных площадках разных размеров

Изобретение относится к измерению качества различных видовых комплексов трав и травянистых растений на пробах, преимущественно на пойменных лугах, и может быть использовано в экологическом мониторинге территорий с травяным покровом. Изобретение относится также к ландшафтам малых рек с луговой...
Тип: Изобретение
Номер охранного документа: 0002602208
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8066

Способ доращивания растений из асептической культуры in vitro в нестерильных условиях

Изобретение относится к области биотехнологии, а именно к технологии адаптации растений, выращенных в асептических условиях. Способ включает пересадку растений на основание с подготовленным почвенным субстратом. При этом почвенный субстрат выкладывают на горизонтально расположенном основании и...
Тип: Изобретение
Номер охранного документа: 0002602203
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8100

Свч - сушильная камера с кольцевыми волноводами

Изобретение относится к оборудованию для сушки крупномерных лесоматериалов и может быть использовано в лесной и деревообрабатывающей отраслях промышленности для сушки оцилиндрованных и строительных бревен, пиленых брусьев, при изготовлении срубов жилых домов. Сушильная камера состоит из...
Тип: Изобретение
Номер охранного документа: 0002602030
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.885a

Электроракетный двигатель (варианты)

Изобретение относится к области электроракетных двигателей (ЭРД). В ЭРД, содержащем разрядную камеру с соплом-анодом, трубопровод подачи рабочего тела, катод, обмотку электромагнитов, согласно изобретению на всей внутренней поверхности разрядной камеры в качестве зашиты от воздействия...
Тип: Изобретение
Номер охранного документа: 0002602468
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.90e5

Мелкозернистая самоуплотняющаяся бетонная смесь

Изобретение относится к мелкозернистой самоуплотняющейся бетонной смеси и может быть использовано для ремонтных работ и для замоноличивания стыков сборных железобетонных конструкций, в том числе преднапряженных: балок, опор, мостовых плит, густоармированных поверхностей и, в частности, для...
Тип: Изобретение
Номер охранного документа: 0002603991
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9c6e

Способ получения терморасширенного графита

Изобретение может быть использовано в производстве уплотнительных материалов, низкоплотных теплораспределяющих материалов и сорбентов. Сначала частицы гидролизованного нитрата графита смешивают с гранулированными частицами карбамида в количестве от 5 до 20 масс. %. Полученную смесь нагревают до...
Тип: Изобретение
Номер охранного документа: 0002610596
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a3f7

Теплоизоляционная конструкция наружной стены

Изобретение относится к строительству и может быть использовано при решении задач утепления наружных стен существующих зданий изнутри. Данное изобретение позволит регулировать положение точки росы и постоянно поддерживать температурный перепад между внутренней поверхностью наружной ограждающей...
Тип: Изобретение
Номер охранного документа: 0002607561
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a6ff

Способ изготовления элементов и сборки ионно-оптической системы (варианты), ионно-оптическая система

Изобретение относится к области плазменной техники, а именно к ионным системам, и может быть использовано в области ракетно-космической техники, при разработке, изготовлении и сборке ионно-оптической системы (ИОС) ионных двигателей (ИД). Технический результат - упрощение обеспечения соосности...
Тип: Изобретение
Номер охранного документа: 0002608188
Дата охранного документа: 17.01.2017
+ добавить свой РИД