×
25.08.2017
217.015.c5a6

Результат интеллектуальной деятельности: Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период

Вид РИД

Изобретение

Аннотация: Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях. Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включает измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения. При этом в течение суток при наличии градиента (t) наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента. Затем учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи. Техническим результатом является расширение диапазона определения теплофизических характеристик ограждающих конструкций. 8 ил.

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях.

Известен способ определения сопротивления теплопередачи ограждающих конструкций ГОСТ 26254-84 «Здания и сооружения».

Недостатком способа является то, что по этой методике предполагается, что стационарный процесс теплопередачи может наступить через 1,5-7,5 суток. Однако на практике при проведении длительных теплофизических экспериментальных исследований результаты эксперимента показывают, что добиться стационарных условий теплопередачи в реальных климатических условиях практически невозможно. Например, разница tн в дневное и ночное время может достигать более 20 градусов. Это создает нестационарные условия теплопередачи и полученные теплофизические характеристики не могут считаться объективными.

Известен способ, которым определяют локальные термические сопротивления обследуемых участков при нестационарном режиме теплопередачи (см. патент №2219534, МПК G01N 25/72, от 12.09.02). Согласно известному способу определяют временной интервал, необходимый и достаточный для получения достоверного результата. В течение всего временного интервала измеряют периодически температуру и плотность теплового потока на наружной и внутренней поверхностях объекта. Задают произвольно и многократно значение теплопроводности нужного слоя. Используя разработанную обобщенную физико-математическую модель теплового неразрушающего контроля многослойных объектов с неоднородностями и заданное значение теплопроводности, рассчитывают для каждого заданного значения теплопроводности теоретически возможную температуру и плотность теплового потока соответственно наружной и внутренней поверхностей, проводят мгновенное тепловизионное обследование и измеряют температуры и плотности тепловых потоков соответственно на внутренней и наружной поверхностях. Сравнивают теоретически возможные значения с измеренными. Выбирают для дальнейших расчетов то значение теплопроводности из числа заданных, которое смогло обеспечить условия сравнения.

Известен способ, в котором определяют термическое сопротивление при нестационарном режиме теплопередачи (см. патент РФ №2316760, МПК G01N 25/72, от 22.08.05).

Согласно известному способу выделяют не менее двух термически однородных зон на термограмме внутренней поверхности объекта. На выделенных участках измеряют и рассчитывают температуры их наружной и внутренней поверхностей при задаваемых значениях теплопроводности (λ). Сравнивают эти температуры в одной системе координат. Задают погрешность между сравниваемыми температурами δ±8,5%. Определяют временные интервалы и на выбранных временных интервалах вычисляют коэффициент теплоотдачи (α). Выбирают значения теплопроводности (λ), при которых α=α+Δα. Определяют термическое сопротивление всех участков с аномалиями температурного поля и соответственно сопротивление теплопередаче этих участков и приведенное сопротивление теплопередаче многослойного объекта.

Прототипом является патент РФ №2383008, МПК G01N 25/18, от 19.12.08, позволяющий определить состояние конструкций и их теплопотери при исследовании нестационарных процессов. Известный способ включает измерение средних значений температуры и теплового потока на наружной и внутренней поверхностях в течение нескольких интервалов времени, последовательное изменение величины и начальных значений временных интервалов, фиксацию тех временных интервалов и измеренных средних значений температуры и теплового потока, в которых данные величины отличаются на величину, не превышающую величину заранее заданной погрешности, и определение сопротивления теплопередачи контролируемого участка и определение термического сопротивления по всей поверхности исследуемого объекта.

Известные способы универсальны, однако широкое применение на практике сдерживается рядом обстоятельств, которые заключаются в следующем:

- имеется существенная нелинейная зависимость точности получаемых результатов от погрешности входных данных - результатов первичных измерений. Также для измерений требуется соблюдение специальных климатических условий.

Недостатком прототипа является тот факт, что в изобретении производят моделирование нестационарной теплопередачи путем изменения температур на внутренней и наружной поверхности исследуемой ограждающей конструкции, что не может отразить всех реальных теплофизических процессов, происходящих в толще исследуемого ограждения, с учетом реальных погодных условий, и не позволяет объективно провести оценку теплозащитных качеств ограждающей конструкции.

Техническим результатом является расширение диапазона определения теплофизических характеристик ограждающих конструкций.

Технический результат достигается тем, что способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включающий измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения. Согласно изобретению в течение суток при наличии градиента (t) наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента, при этом учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи.

Предлагаемый способ поясняется чертежами:

На фиг. 1. приведен суточный график изменения температур по толщине наружной стены здания 3 корпуса ПГТУ, расположенного по адресу г. Йошкар-Ола, ул. Панфилова д. 17, с квазистационарными условиями теплопередачи.

Квазистационарными являются такие изменения характеристик среды, при которых параметры объекта можно описать стационарными уравнениями, например

где: ΔΤ=ΤBH - разность температур на соответствующих поверхностях участка;

q - плотность теплового потока;

R - термическое сопротивление участка.

В предельном случае малости изменений характеристик среды возникает стационарность - неизменность теплового состояния объекта. Их слабые изменения - это квазистационарность.

Определяя границы зон с квазистационарными условиями теплопередачи, температуры на границах, тепловой поток. Определим R0 по формуле (1).

По фигурам 1-8 видно, как в течение суток зона смещается от наружной поверхности к внутренней поверхности ограждения. Это обусловлено характером изменения tн в дневное, ночное время от 4°С до 16°С. Физический эффект возникновения в толще стены зон с квазистационарными условиями теплопередачи позволяет решить задачу определения Roфакт. Выбор наиболее продолжительных временных зон с квазистационарными условиями теплопередачи снизит погрешность и даст более объективные значение Roфакт, что видно в формуле (2) и на фигуре 2.

На фиг. 2. Расположение термопар по толщине наружной стены здания 3 корпуса ПГТУ, расположенного по адресу г. Йошкар-Ола, ул. Панфилова д. 17, с квазистационарными условиями теплопередачи.

t3, t5 - постоянные значения температуры в течение промежутка времени ΔT;

Q - величина теплового потока;

Значения Rофакт находятся в прямопропорциональной зависимости от δ толщины ограждения. Если принять допущение, что величина Q теплового потока при прохождении через стену не меняет своего значения, то, определив процентное соотношение δ толщины зоны с квазистационарными условиями теплопередачи по всей толщине, можем определить Rофакт всей стены.

На фиг. 3 показано сечение 1-1. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 0:30 до 2:00.

На фиг. 4 показано сечение 2-2. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 3:00 до 4:00.

На фиг. 5 показано сечение 3-3. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 4:00 до 6:00.

На фиг. 6 показано сечение 4-4. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 7:00 до 9:00.

На фиг. 7 показано сечение 5-5. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 9:30 до 10:00.

На фиг. 8 показано сечение 6-6. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 10:30 до 12:00.

Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включающий измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения, отличающийся тем, что в течение суток при наличии градиента наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента, при этом учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи.
Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период
Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период
Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период
Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период
Источник поступления информации: Роспатент

Показаны записи 91-100 из 152.
20.11.2015
№216.013.9249

Способ замера объема нефтепродукта в резервуаре

Изобретение относится к системам нефтепродуктообеспечения. Изобретение касается способа замера объема нефтепродукта в резервуаре, в котором мерной линейкой замеряют высоту нефтепродукта в резервуаре, имеющем форму цилиндра круглого горизонтально расположенного, и при известных величинах радиуса...
Тип: Изобретение
Номер охранного документа: 0002569065
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92a6

Муфта предохранительная

Изобретение относится к машиностроению и может быть использовано для передачи вращательного движения. Предохранительная муфта содержит корпус, который выполнен составным, состоящим из правой и левой половин, соединенных между собой посредством болтового соединения; ведомый вал, жестко...
Тип: Изобретение
Номер охранного документа: 0002569160
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92ae

Муфта предохранительная

Изобретение относится к области машиностроения и может быть использовано в устройствах для передачи вращательного движения с ведущего вала на ведомый с одновременной защитой механизмов от перегрузок, превышающих расчетные. Муфта содержит корпус, соединенный с концами ведущего и ведомого валов....
Тип: Изобретение
Номер охранного документа: 0002569168
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.93ca

Водный велосипед

Изобретение относится к малогабаритным плавучим транспортным средствам для отдыха на воде, спортивных соревнований и в качестве тренажера. Водный велосипед включает плавучий корпус, подводные крылья, педали и руль. Корпус велосипеда выполнен в виде совокупности трех корпусов, которые закреплены...
Тип: Изобретение
Номер охранного документа: 0002569453
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.94f1

Способ сравнительной индикации загрязненности воздуха по флуктуирующей асимметрии листьев березы

Изобретение относится экологии и может быть использовано для сравнительной индикации загрязненности воздуха по флуктуирующей асимметрии листьев березы. Способ включает взятие листьев от учетных деревьев березы, растущих в одинаковых экологических условиях местопроизрастания, причем все листья,...
Тип: Изобретение
Номер охранного документа: 0002569748
Дата охранного документа: 27.11.2015
10.01.2016
№216.013.9ee7

Ручное устройство для образования лунок под посадку контейнеризированных сеянцев

Изобретение относится к области лесного хозяйства, преимущественно к технологии создания лесных культур сеянцами с закрытой корневой системой, выращенных в контейнерах. Сущность изобретения заключается в том, что к корпусу тележки, на платформе которой установлен ящик с сеянцами, в нижней ее...
Тип: Изобретение
Номер охранного документа: 0002572316
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f7f

Уплотнение вала турбонасосного агрегата (варианты)

Предлагаемое изобретение относится к области турбомашиностроения, а именно к высокооборотным высоконапорным центробежным насосам, и может быть использовано в области ракетостроения, в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей (ЖРД). В предлагаемом изобретении в уплотнении...
Тип: Изобретение
Номер охранного документа: 0002572468
Дата охранного документа: 10.01.2016
27.01.2016
№216.014.bc80

Система и способ применения правил доступа к файлам при их передаче между компьютерами

Изобретение относится к области защиты компьютерных устройств и данных конечных пользователей от несанкционированного доступа. Техническим результатом является повышение уровня защиты информации от неавторизованного доступа путем применения правил доступа к файлам при их передаче между...
Тип: Изобретение
Номер охранного документа: 0002573785
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c3bd

Стыковое соединение железобетонных плит сборно-разборных дорожных покрытий

Изобретение относится к сборно-разборным покрытиям автомобильных дорог. Технический результат - улучшение качества соединения дорожных плит, снижение трудоемкости работ на укладке. Стыковое устройство плиты с торцовых сторон, относительно продольной оси, снабжено пазами с шарнирно...
Тип: Изобретение
Номер охранного документа: 0002574092
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c5c3

Складной якорь

Изобретение относится к донным опорам и может быть использовано для удержания на месте маломерных судов на водохранилищах. Складной якорь содержит веретено, лапы. Веретено выполнено в виде мешка из брезентовой ткани, на теле которого в нижней его части смонтированы лапы. Лапы объединены в две...
Тип: Изобретение
Номер охранного документа: 0002578002
Дата охранного документа: 20.03.2016
Показаны записи 91-100 из 209.
10.04.2015
№216.013.3af9

Система и способ предоставления прав доступа приложениям к файлам компьютера

Изобретение относится к вычислительной технике. Технический результат заключается в повышении уровня защиты информации от неавторизованного доступа путем предоставления приложению прав доступа к файлу в зависимости от политик предоставления прав доступа. Система предоставления прав доступа...
Тип: Изобретение
Номер охранного документа: 0002546585
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c82

Аккумуляторная батарея и система управления аккумуляторной батареей

Изобретение относится к области электротехники и может быть использовано в зарядных устройствах литий-ионных батарей. Технический результат - сокращение времени заряда и увеличение времени разряда батареи. Система управления аккумуляторной батареей содержит блок общего управления и блоки...
Тип: Изобретение
Номер охранного документа: 0002546978
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f93

Способ анализа видового состава луговой травы от высоты пробной площадки над урезом малой реки

Изобретение относится к области сельского хозяйства, в частности к экологическому мониторингу. Способ включает выделение на малой реке или ее притоке визуально по карте или натурно участка пойменного луга. Затем на этом участке по течению малой реки или ее притока в характерных местах размечают...
Тип: Изобретение
Номер охранного документа: 0002547763
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.412b

Способ подготовки ленточных пил ленточнопильных станков

Изобретение относится к ленточнопильным станкам, а именно к способу подготовки ленточных пил путем пластического деформирования. Вальцевание производят по плоскостям ленточных пил асимметрично с использованием роликов разного диаметра. Вальцевание происходит при криволинейном движении ленты по...
Тип: Изобретение
Номер охранного документа: 0002548181
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.41c3

Способ испытания турбин и стенд для его реализации

Изобретение относится к области машиностроения и предназначено для проведения испытаний турбин. Испытания паровых и газовых турбин энергетических и энергодвигательных установок на автономных стендах являются эффективным средством опережающей отработки новых технических решений, позволяющим...
Тип: Изобретение
Номер охранного документа: 0002548333
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4266

Устройство для химического ухода за лесом

Устройство относится к области лесного хозяйства и предназначено для уничтожения малоценных пород лиственных деревьев при проведении рубок ухода. Устройство содержит рукоятку и закрепленные на рукоятке режущий аппарат и механизм подачи химического раствора. Механизм подачи химического раствора...
Тип: Изобретение
Номер охранного документа: 0002548496
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4688

Способ и устройство для контроля точности формы изделия, расположения и размеров отверстий

Изобретение относится к деревообрабатывающей промышленности и может быть использовано для проверки точности формы изделия, расположения и размеров отверстий на щитовых и рамочных деталях и сборочных единицах. Поверочный угольник с индикаторными глубиномерами и устройство с переставляемыми...
Тип: Изобретение
Номер охранного документа: 0002549560
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.46f7

Способ тестирования двигательных способностей человека

Изобретение относится к областям, где требуется оценка двигательных способностей человека, и может найти применение в физиологической, медицинской, психологической, транспортной, авиационно-космической, спортивной и в других областях науки и практики. На горизонтальной площадке оптическим...
Тип: Изобретение
Номер охранного документа: 0002549671
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.4763

Способ экологического измерения сторон березняка городского сквера по флуктуирующей асимметрии листьев

Изобретение относится к инженерной биологии и индикации окружающей среды в виде березняка городского сквера. Способ включает выбор учетных деревьев березы в городском сквере вытянутой формы. На каждой удлиненной стороне сквера выделяют не менее пяти учетных деревьев березы. По четырем сторонам...
Тип: Изобретение
Номер охранного документа: 0002549779
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4857

Способ и машина для формирования пачек деревьев

Изобретение относится к технологии и машинам для валки деревьев и формирования из них пачек для дальнейшей их трелевки и может быть использовано в лесной промышленности и лесном хозяйстве. Способ включает наводку захватно-срезающего устройства манипулятором на стоящие деревья, захват, срезание,...
Тип: Изобретение
Номер охранного документа: 0002550026
Дата охранного документа: 10.05.2015
+ добавить свой РИД