×
25.08.2017
217.015.c58e

Результат интеллектуальной деятельности: Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане

Вид РИД

Изобретение

№ охранного документа
0002618453
Дата охранного документа
03.05.2017
Аннотация: Изобретение относится к способу получения нанокапсул лекарственных препаратов группы пенициллинов, выбранных из ампициллина, бензилпенициллина натриевой соли или амоксициллина, в каррагинане. Указанный способ характеризуется тем, что к 0,5 г каррагинана в гексане добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества, к полученной суспензии добавляют небольшими порциями 0,5 г порошка антибиотика, затем добавляют 5 мл бутилхлорида, полученную суспензию нанокапсул отфильтровывают и сушат при 25°С. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул лекарственных препаратов группы пенициллинов, а также увеличение их выхода по массе. 4 ил., 5 пр.

Изобретение относится к области нанотехнологии, медицины, ветеринарии.

Ранее были известны способы получения микрокапсул. Так, в пат. 2092155 МПК А61К 047/02, А61К 009/16, опубл. 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055, МПК А61К 9/52, А61К 9/16, А61К 9/10, Российская Федерация, опубл. 10.11.1997 предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°C и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубл. 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК А61К 9/52, А61К 9/50, А61К 9/22, А61К 9/20, А61К 31/19, Российская Федерация, опубл. 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержащая микрокапсулы размером 100-800 мкм в диаметре и состоящая из фармацевтического ядра с кристаллическим ибупрофеном, и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубл. 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135 описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, что, в свою очередь, приводит к уменьшению выхода конечных капсул.

В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009, Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

В пат. WO/2009/148058 JP, МПК B01J 13/04, A23L 1/00, А61К 35/20, А61К 45/00, А61К 47/08), А61К 47/26, А61К 47/32, А61К 47/34, А61К 47/36, А61К 9/50, B01J 2/04, B01J 2/06, опубл. 10.12.2009 описан процесс получения микрокапсул, применимый для промышленного производства, в которых высокое содержание гидрофильного биологически активного вещества, заключенного в оболочку. Предлагаемые микрокапсулы могут быть использованы в пищевой, фармацевтической и в других областях промышленности. В процесс производства применяются диспергирующие композиции, состоящие из гидрофильных биологически активных веществ и ПАВ в твердом жире. Температура не ниже, чем температура плавления твердого жира.

Недостатками данного способа являются сложность и длительность процесса получения микрокапсул.

В пат. WO/2010/119041 ЕР, МПК A23L 1/00, опубл. 21.10.2010 предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, процесс фильтрации осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например, от 0,1 до 0,9 мкм. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 мкм.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), пролучение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. WO/2011/160733 ЕР, МПК B01J 13/16, опубл. 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии,затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°C до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/161229 ЕР, МПК А61К 8/11; B01J 13/14; B01J 13/16; C11D 3/50, опубл. 29.12.2011 описан способ получения микрокапсул, содержащих оболочку из полимочевины и духов в масле, где оболочка получается в результате реакции двух структурно различных диизоцианатов в виде эмульсии. В процессе получения микрокапсул используются защитные коллоиды. Во время реакции изоцианатов и аминов, должен присутствовать защитный коллоид. Это предпочтительно поливинилпирролидон (ПВП). Защитный коллоид - полимерная система, которая в суспензии или дисперсии предотвращает слипание (агломерация, коагуляции, флокуляции). При данном способе может быть использован для духов и всевозможных потребительских товаров. Исчерпывающий перечень потребительских товаров не может быть перечислен. Наглядные примеры потребительских товаров включают в себя все приложения, включая жидкие моющие средства, и порошковых моющих средств; все средства личной гигиены и ухода за волосами приложений, включая шампуни, кондиционеры, кремы для расчесывания, кондиционеры, стайлинг-крем, мыло, кремы для тела и т.п.; дезодоранты и антиперспиранты.

Недостатками данного способа получения микрокапсул являются сложность и длительность процесса, использование в качестве оболочки микрокапсул диизоцианатов, которые получают в результате реакции двух изоцианатов.

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул водорастворимых лекарственных препаратов группы пенициллинов в каррагинане, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул лекарственных препаратов группы пенициллинов, характеризующийся тем, что в качестве оболочки нанокапсул используется каррагинан, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - бутилхлорида.

Результатом предлагаемого метода является получение нанокапсул лекарственных препаратов группы пенициллинов в каррагинане в течение 15 минут. Выход нанокапсул составляет 100%.

На рис.1 и в таблице 1 представлено распределение частиц по размерам в образце нанокапсул амоксициллина в каррагинане (соотношение ядро:оболочка 1:1).

На рис. 2 и в таблице 2 представлено распределение частиц по размерам в образце нанокапсул ампициллина в каррагинане (соотношение ядро:оболочка 1:1).

На рис. 3 и в таблице 3 представлено распределение частиц по размерам в образце нанокапсул ампициллина в каррагинане (соотношение ядро:оболочка 1:3).

На рис. 4 и в таблице 4 представлено распределение частиц по размерам в образце нанокапсул натриевой соли бензилпенициллина в каррагинане (соотношение ядро:оболочка 1:1).

ПРИМЕР 1. Получение нанокапсул ампициллина в соотношении ядро:оболочка 1:1

К 0,5 г каррагинана в гексане добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. 0,5 г порошка ампициллина добавляют небольшими порциями к суспензии каррагинана в гексане. Затем добавляют 5 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают и сушат при 25°С.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул натриевой соли бензилпенициллина в соотношении ядро:оболочка 1:1

К 0,5 г каррагинана в гексане добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. 0,5 г порошка натриевой соли бензилпенициллина добавляют небольшими порциями к суспензии каррагинана в гексане. Затем добавляют 5 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают и сушат при 25°С.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул стрептомицина в соотношении ядро:оболочка 1:1

К 0,5 г каррагинана в гексане добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. 0,5 г порошка стрептомицина добавляют небольшими порциями к суспензии каррагинана в гексане. Затем добавляют 5 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают и сушат при 25°С.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул амоксициллина в соотношении ядро:оболочка 1:1

К 0,5 г каррагинана в гексане добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. 0,5 г порошка амоксициллина добавляют небольшими порциями к суспензии каррагинана в гексане. Затем добавляют 5 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают и сушат при 25°С.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 5. Определение размеров нанокапсул антибиотиков пенициллинового ряда

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением является 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto.длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул лекарственных препаратов группы пенициллинов, выбранных из ампициллина, бензилпенициллина натриевой соли или амоксициллина, в каррагинане, характеризующийся тем, что к 0,5 г каррагинана в гексане добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества, к полученной суспензии добавляют небольшими порциями 0,5 г порошка антибиотика, затем добавляют 5 мл бутилхлорида, полученную суспензию нанокапсул отфильтровывают и сушат при 25°С.
Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане
Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане
Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане
Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане
Источник поступления информации: Роспатент

Показаны записи 381-390 из 672.
29.12.2017
№217.015.f6be

Способ получения нанокапсул сухого экстракта шиповника

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта шиповника в оболочки из геллановой камеди. Способ характеризуется тем, что сухой экстракт шиповника диспергируют в суспензию геллановой камеди в...
Тип: Изобретение
Номер охранного документа: 0002639092
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f770

Способ получения ряженки с наноструктурированным креатин гидратом

Способ получения ряженки с наноструктурированным креатин гидратом относится к молочной промышленности. Способ включает введение в топленое молоко 4% жирности закваски при температуре 40-41°С, введение наноструктурированной добавки - 150-200 мг креатин гидрата в оболочке из альгината натрия и...
Тип: Изобретение
Номер охранного документа: 0002639290
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fa65

Способ получения нанокапсул сухого экстракта топинамбура

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта топинамбура. Способ характеризуется тем, что к суспензии, содержащей альгинат натрия в бутаноле и препарат Е472 с в качестве...
Тип: Изобретение
Номер охранного документа: 0002640130
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fa86

Способ получения нанокапсул аекола

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул АЕКола в оболочке из натрий карбоксиметилцеллюлозы. Способ характеризуется тем, что АЕКол прибавляют в суспензию натрий карбоксиметилцеллюлозы в бензоле, в...
Тип: Изобретение
Номер охранного документа: 0002640128
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.faaa

Способ получения нанокапсул сухого экстракта топинамбура

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта топинамбура. Способ характеризуется тем, что к суспензии, содержащей каррагинан в бутаноле и препарат Е472с в качестве поверхностно-активного...
Тип: Изобретение
Номер охранного документа: 0002640127
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fb03

Способ получения нанокапсул аекола

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул АЕКола в оболочке из альгината натрия. Способ характеризуется тем, что АЕКол прибавляют в суспензию альгината натрия в бензоле в присутствии 0,01 г Е472с в...
Тип: Изобретение
Номер охранного документа: 0002640129
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fe58

Способ получения мармелада, содержащего наноструктурированный экстракт шпината

Изобретение относится к кондитерской промышленности. Предложен способ получения мармелада с наноструктурированным экстрактом шпината, в котором 100 г сахара растворяют в 200 г воды и смесь уваривают в течение 10 мин, затем добавляют 2 г агар-агара и варят еще 5 мин, наливают 50 г яблочного...
Тип: Изобретение
Номер охранного документа: 0002638309
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0294

Способ производства хлеба, содержащий наноструктурированный экстракт сухого топинамбура

Изобретение относится к пищевой промышленности. Способ получения хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение, разделку, расстойку тестовых заготовок и их выпечку. В процессе приготовления...
Тип: Изобретение
Номер охранного документа: 0002630234
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.02cd

Способ производства хлеба, содержащий наноструктурированный экстракт сухого шиповника

Изобретение относится к пищевой промышленности. Способ получения хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение, разделку, расстойку тестовых заготовок и их выпечку. В процессе приготовления...
Тип: Изобретение
Номер охранного документа: 0002630250
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.044a

Способ получения нанокапсул сухого экстракта шиповника

Изобретение относится к способу получения нанокапсул сухого экстракта шиповника. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используется каррагинан, при этом сухой экстракт шиповника диспергируют в суспензию каррагинана в толуоле в присутствии препарата Е472с в...
Тип: Изобретение
Номер охранного документа: 0002630611
Дата охранного документа: 11.09.2017
Показаны записи 381-390 из 686.
20.01.2018
№218.016.109e

Способ получения нанокапсул семян чиа (salvia hispanica) в геллановой камеди

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул семян чиа в геллановой камеди. Способ характеризуется тем, что порошок семян чиа медленно добавляют в суспензию геллановой камеди в гексане в присутствии 0,01 г...
Тип: Изобретение
Номер охранного документа: 0002633747
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.11df

Способ производства хлеба, содержащий наноструктурированный экстракт эхинацеи

Изобретение относится к пищевой промышленности. Способ получения хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение, разделку, расстойку тестовых заготовок и их выпечку. В процессе приготовления...
Тип: Изобретение
Номер охранного документа: 0002634285
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.11eb

Способ производства хлеба, содержащего наноструктурированный иодид калия

Изобретение относится к пищевой промышленности. Способ получения хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение, разделку, расстойку тестовых заготовок и их выпечку. В процессе приготовления...
Тип: Изобретение
Номер охранного документа: 0002634288
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1226

Способ производства хлеба, содержащего наноструктурированный бетулин

Изобретение относится к пищевой промышленности. Способ получения хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение, разделку, расстойку тестовых заготовок и их выпечку. В процессе приготовления...
Тип: Изобретение
Номер охранного документа: 0002634287
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1234

Способ получения микрокапсул жирорастворимых витаминов в желатине

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул жирорастворимых витаминов А или Е в оболочке из желатина. Способ характеризуется тем, что 100 мг витамина А или Е добавляют в суспензию желатина в петролейном...
Тип: Изобретение
Номер охранного документа: 0002634257
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1271

Способ получения нанокапсул сухого экстракта топинамбура

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта топинамбура. Способ характеризуется тем, что сухой экстракт топинамбура добавляют в суспензию агар-агара в этаноле, содержащую 0,01 г препарата...
Тип: Изобретение
Номер охранного документа: 0002634256
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1302

Способ получения йогурта, обогащенного магнием

Изобретение относится к молочной промышленности и нанотехнологии. Подготавливают молоко и заквашивают. Вводят 500 мг на литр молочной смеси наноструктурированный карбонат магния в каррагинане или наноструктурированный карбонат магния в конжаковой камеди. Сквашивают смесь в течение 8 ч при...
Тип: Изобретение
Номер охранного документа: 0002634410
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.175b

Способ получения нанокапсул бетулина в каррагинане

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул бетулина. Способ характеризуется тем, что порошок бетулина медленно добавляют в суспензию каррагинана в изопропаноле, в присутствии 0,01 г препарата Е472с в...
Тип: Изобретение
Номер охранного документа: 0002635763
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.1763

Способ получения нанокапсул бетулина

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул бетулина. Способ характеризуется тем, что порошок бетулина медленно добавляют в суспензию натрий карбоксиметилцеллюлозы в изопропаноле в присутствии 0,01 г...
Тип: Изобретение
Номер охранного документа: 0002635764
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.19f2

Способ получения нанокапсул сухого экстракта шиповника в пектине

Изобретение относится к пищевой промышленности. Способ получения нанокапсул сухого экстракта шиповника предусматривает использование в качестве ядра сухого экстракта шиповника, а в качестве оболочки - высоко- или низкоэтерифицированного яблочного или цитрусового пектина. При этом сухой...
Тип: Изобретение
Номер охранного документа: 0002636321
Дата охранного документа: 22.11.2017
+ добавить свой РИД