×
25.08.2017
217.015.c4f6

Результат интеллектуальной деятельности: Способ получения прекурсора для изготовления плакированного пеноалюминия

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии, преимущественно к получению пористых изделий на основе пеноалюминия, и предназначено для изготовления деталей автомобилей, шумопоглащающих экранов, теплостойких демпфирующих материалов. Способ получения прекурсора для изготовления плакированного пеноалюминия включает изготовление из металлического листа контейнера, загрузку в контейнер порошка алюминиевого сплава с порофором, после заполнения которого контейнер сверху закрывают металлическим листом, герметизируют и проводят ступенчатую горячую прокатку, при этом изготавливают контейнер из металлического листа, выполненного из алюминиевого сплава, многоступенчатую горячую прокатку осуществляют при температуре 420°С с суммарным обжатием 80% и промежуточными отжигами между проходами, причем на первом проходе прокатку осуществляют с обжатием 30%, на втором - с обжатием 20%, на третьем - с обжатием 10%, на последующих четырех - с обжатием 5% от исходной толщины контейнера. Изобретение направлено на создание способа получения прекурсора для изготовления плакированного пеноалюминия с использованием прокатки для консолидации листов из алюминиевого сплава с порошком алюминиевого сплава, содержащим порофор. 3 ил., 2 пр.

Изобретение относится к области порошковой металлургии, преимущественно к получению пористых изделий на основе пеноалюминия, и предназначено для изготовления деталей автомобилей, шумопоглащающих экранов, теплостойких демпфирующих материалов.

В современном машиностроении все чаще требуются материалы с особыми свойствами. Одним из таких материалов является пеноалюминий. Материалы на основе пеноалюминия появились в начале 90-х годов 20 века и с каждым годом, благодаря их уникальным свойствам, таким как низкая плотность, низкая теплопроводность, эффективные шумоизоляция и поглощение энергии удара, их применение в различных областях техники с каждым годом возрастает.

В патенте РФ №2085339 (опубл. 27.07.1997) описан способ получения пористых полуфабрикатов и готовых изделий из порошков алюминиевых сплавов, включающий в себя смешивание порошков алюминиевых сплавов с порофором с температурой разложения, превышающей температуру солидуса-ликвидуса алюминиевого сплава, засыпку полученной смеси в неразборную емкость из алюминиевого сплава, нагрев емкости с порошковой смесью до температуры ниже температуры солидуса порошка алюминиевого сплава, горячее прессование в плотную заготовку, горячую деформацию плотной заготовки, охлаждение, помещение заготовки в форму из материала, химически не взаимодействующего с материалом заготовки, и сохраняющую геометрию и размеры при термообработке, термическую обработку.

Недостатком этого способа является низкий выход годного изделия по массе из-за образующихся в плотной заготовке после горячего прессования и горячей деформации несплошностей.

В патенте РФ №2154548 (опубл. 20.08.2000) описан способ получения пористых полуфабрикатов и готовых изделий из порошков алюминиевых сплавов, включающий смешивание порошков алюминиевых сплавов с порофорами с температурой разложения, превышающей температуру солидуса-ликвидуса порошка алюминиевого сплава, засыпку полученной смеси в емкость из алюминиевого сплава, нагрев емкости со смесью порошков, горячее прессование, повторный нагрев, горячую деформацию прессованной заготовки, в частности прокаткой, ее охлаждение и последующую высокотемпературную обработку в форме с повторным охлаждением.

Недостатком этого способа является невысокая производительность вследствие значительного количества технологических операций и их продолжительности и, следовательно, достаточно высокая себестоимость изделий.

В патенте РФ №2444417 (опубл. 10.03.2012) описан способ получения композиционных материалов на основе пеноалюминия (изделий) из порошков алюминиевых сплавов. Контейнер выполняют из стального листа и после загрузки порошковой смеси закрывают сверху плоским мерным листом с закрытием края контейнера по всему периметру. После этого получают плотную (скомпактированную) заготовку. Для этого в печи контейнер равномерно по всей площади нагревают до температуры 450-530°С в зависимости от состава порошкового материала и подают на горячее компактирование на прокатном стане. При этом обеспечивают удельное давление, достаточное для обеспечения относительной плотности скомпактированной порошковой смеси не менее 97% для получения качественной структуры пенометаллического слоя изделий при дальнейшем процессе вспенивания.

Указанный способ является наиболее близким аналогом настоящего изобретения по совокупности существенных признаков.

Основным отличием данного изобретения является то, что контейнер для порошка изготавливается из алюминиевого сплава и не требуется его удаление после процесса компактирования. И получение панели плакированного пеноалюминия происходит непосредственно при нагреве изготовленного прекурсора, без дополнительных операций.

Техническим результатом данного изобретения является способ получения прекурсора для изготовления плакированного пеноалюминия с использованием прокатки для консолидации листов из алюминиевого сплава с порошком алюминиевого сплава, содержащим порофор.

Технический результат достигается следующим образом.

Способ получения прекурсора для изготовления плакированного пеноалюминия включает изготовление из металлического листа контейнера, загрузку в контейнер порошка алюминиевого сплава с порофором, после заполнения которого контейнер сверху закрывают металлическим листом, герметизируют и проводят ступенчатую горячую прокатку. Изготавливают контейнер из металлического листа, выполненного из алюминиевого сплава, многоступенчатую горячую прокатку осуществляют при температуре 420°C с сумарным обжатием 80% и промежуточными отжигами между проходами, причем на первом проходе прокатку осуществляют с обжатием 30%, на втором - с обжатием 20%, на третьем - с обжатием 10%, на последующих четырех - с обжатием 5% от исходной толщины контейнера.

В способе получения прекурсора для изготовления плакированного пеноалюминия, включающем в себя изготовление контейнера из алюминиевого сплава, заполнение контенера порошком алюминиевого сплава с порофором, герметизацию контейнера и горячую многостадийную прокатку, происходит твердофазная сварка листов контейнера с консолидированным порошком, в связи с чем при дальнейшем вспенивании прекурсора не требуется производить дополнительных операций для получения плакированной панели пеноалюминия.

Сущность изобретения поясняется чертежами, на которых изображено: На фиг. 1 - Поперечное сечение контейнера для порошка с завальцованными краями, цифрами обозначено: 1 - листы обкладки, 2 - порошок, 3 - места завальцовки.

На фиг. 2 - Поперечное сечение контейнера для порошка со сваренными краями, цифрами обозначено: 1 - листы обкладки, 2 - порошок, 3 - места сварки.

На фиг. 3 - Микроструктура сварного шва между обкладками контейнера и порошком.

Осуществление изобретения

Для решения поставленной задачи предлагается следующая технология: для изготовления прекурсора необходимо изготовить контейнер из алюминиевого сплава для порошка в форме параллелепипеда, заполнить его алюминиевым порошком с порофором и полученную сборку прокатать для консолидации порошка. Контейнер для порошка изготавливается из двух листов алюминиевого сплава: один из листов имеет П-образную форму, второй - гладкий. Первый лист заполняется порошком алюминиевого сплава с порофором и накрывается вторым листом. Для герметизации контейнера проводится сварка листов аргонодуговой сваркой или завальцовка контейнера. Затем собранный контейнер подвергается многостадийной прокатке при температуре 420°С. Обжатие при первом проходе составляет 30% от исходной толщины контейнера, что обеспечивает компактирование порошка; обжатие при втором проходе - 20% от начальной высоты контейнера; при третьем проходе обжатие составляет 10% от исходной толщины; обжатие при последующих четырех проходах составляет 5%. После каждого прохода осуществляется промежуточный отжиг в течение 10 минут для снятия напряжений, чтобы избежать растрескиваний прекурсора при прокатке.

Пример 1

Из листа алюминиевого сплава размером 200×160 мм изготовили нижнюю часть контейнера П-образной формы. Заполнили полученный контейнер смесью порошка алюминиевого сплава с порофором, заполнение происходило свободной засыпкой. Закрыли полученную емкость гладким листом алюминиевого сплава размером 200×120 мм. Для герметизации контейнера края завальцевали.

Собранный контейнер выдерживался в муфельной печи в течение 30 минут при температуре 420°С. После нагрева горячий контейнера подавался на прокатный стан. Обжатие при первом проходе составляло 30% от исходной толщины контейнера. Такое обжатие обеспечивает компактирование порошка внутри контейнера. Обжатие при втором проходе составило 20% от исходной толщины контейнера, при третьем проходе - 10% от исходной толщины, при последующих четырех проходах обжатие составляло 5% от исходной толщины. Между проходами осуществлялся промежуточный отжиг контейнера, с целью снятия напряжений и частичной полигонизации структуры.

После обрезки боковин получился прекурсор для дальнейшего вспенивания размером 400×100×2 мм. Микроструктурные исследования показали, что между листами обкладки и порошком произошла твердофазная сварка.

Пример 2

Из листа алюминиевого сплава размером 200×126 мм изготовили нижнюю часть контейнера П-образной формы. Заполнили полученный контейнер смесью порошка алюминиевого сплава с порофором, заполнение происходило свободной засыпкой. Закрыли полученную емкость гладким листом алюминиевого сплава размером 200×106 мм. Для герметизации контейнера края сварили с использованием агронодуговой сварки.

Собранный контейнер выдерживался в муфельной печи в течение 30 минут при температуре 420°С. После нагрева горячий контейнера подавался на прокатный стан. Обжатие при первом проходе составляло 30% от исходной толщины контейнера. Такое обжатие обеспечивает компактирование порошка внутри контейнера. Обжатие при втором проходе составило 20% от исходной толщины контейнера, при третьем проходе - 10% от исходной толщины, при последующих четырех проходах обжатие составляло 5% от исходной толщины. Между проходами осуществлялся промежуточный отжиг контейнера, с целью снятия напряжений и частичной полигонизации структуры.

После обрезки боковин получился прекурсор для дальнейшего вспенивания размером 400×100×2 мм. Микроструктурные исследования показали, что между листами обкладки и порошком произошла твердофазная сварка.

Способ получения прекурсора для изготовления плакированного пеноалюминия, включающий изготовление из металлического листа контейнера, загрузку в контейнер порошка алюминиевого сплава с порофором, после заполнения которого контейнер сверху закрывают металлическим листом, герметизируют и проводят горячую прокатку, отличающийся тем, что в качестве металлического листа используют лист, выполненный из алюминиевого сплава, многоступенчатую горячую прокатку осуществляют при 420°С с суммарным обжатием 80% и промежуточными отжигами, причем на первом проходе прокатку осуществляют с обжатием 30%, на втором – с обжатием 20%, на третьем – с обжатием 10%, на последующих четырех – с обжатием 5% от исходной толщины контейнера.
Способ получения прекурсора для изготовления плакированного пеноалюминия
Источник поступления информации: Роспатент

Показаны записи 211-220 из 322.
08.07.2018
№218.016.6e1b

Способ получения поликристаллических ферритов-гранатов

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим...
Тип: Изобретение
Номер охранного документа: 0002660493
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6ead

Литейный алюминиево-кальциевый сплав

Изобретение относится к области металлургии. Алюминиевый сплав содержит 5.4-6,4% кальция, 0,3-0,6% кремния и 0,8-1,2% железа. В виде отливок, не требующих термической обработки, сплав обладает следующими механическими свойствами на растяжение: временное сопротивление (σ) не менее 180 МПа,...
Тип: Изобретение
Номер охранного документа: 0002660492
Дата охранного документа: 06.07.2018
25.08.2018
№218.016.7eb1

Способ генерации терагерцовых импульсов на основе термоупругого эффекта

Использование: для генерации терагерцовых импульсов на основе термоупругого эффекта. Сущность изобретения заключается в том, что получают акустические колебания путем воздействия лазерным импульсом на пару металлов, один из которых, подвергаемый воздействию лазерного излучения, представляет...
Тип: Изобретение
Номер охранного документа: 0002664967
Дата охранного документа: 24.08.2018
25.08.2018
№218.016.7f6e

Композиционный материал с прочной металлической матрицей и упрочняющими частицами карбида титана и способ его изготовления

Группа изобретений относится к получению композиционного материала, содержащего металлическую матрицу из алюминиевого сплава и упрочняющие частицы карбида титана. Ведут механическое легирование смеси, содержащей порошок титана и наноалмазы при соотношении, равном (47,867÷52) : (12,0107), и...
Тип: Изобретение
Номер охранного документа: 0002664747
Дата охранного документа: 22.08.2018
25.08.2018
№218.016.7f8f

Способ обработки магниевого сплава системы mg-al-zn методом ротационной ковки

Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов, и может быть использовано для получения изделий, применяемых в качестве конструкционных материалов в авиации, ракетной технике, транспорте и т.д. Способ обработки магниевого...
Тип: Изобретение
Номер охранного документа: 0002664744
Дата охранного документа: 22.08.2018
25.08.2018
№218.016.7f92

Способ получения ферритовых изделий

Изобретение относится к получению ферритовых изделий. Способ включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и...
Тип: Изобретение
Номер охранного документа: 0002664745
Дата охранного документа: 22.08.2018
28.08.2018
№218.016.7fc4

Способ определения макрорельефа поверхности и внутренних включений объекта и устройство для его реализации

Изобретение относится к неразрушающим методам исследования твердых материалов и может быть использовано для контроля заданных параметров объектов и определения их физических характеристик. Предлагается способ определения макрорельефа поверхности и внутренних включений, дефектов объекта, и...
Тип: Изобретение
Номер охранного документа: 0002664933
Дата охранного документа: 23.08.2018
28.08.2018
№218.016.7fe2

Способ получения трехмерных изделий сложной формы из высоковязких полимеров и устройство для его осуществления (варианты)

Изобретение относится к области аддитивных технологий для получения трехмерных изделий сложной формы, например, для создания трехмерного принтера, и предназначено для быстрого прототипирования или получения малых серий изделий, в общем, и транспортном машиностроении, авиационной технике или...
Тип: Изобретение
Номер охранного документа: 0002664962
Дата охранного документа: 23.08.2018
28.08.2018
№218.016.7fec

Способ изготовления фильтров для ик-диапазона

Изобретение относится к области оптического приборостроения и касается способа изготовления фильтров для ИК-диапазона. Способ заключается в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора с перепадом температуры между зонами испарения и...
Тип: Изобретение
Номер охранного документа: 0002664912
Дата охранного документа: 23.08.2018
29.08.2018
№218.016.80e0

Биоактивный полимерный пористый каркас

Изобретение относится к области медицины, в частности к созданию биосовместимых каркасов для замещения дефектов костной ткани. Биосовместимый каркас в форме биорезорбируемой пористой конструкции медицинского назначения с повышенной остеокондуктивностью на основе термопластичного полимера с...
Тип: Изобретение
Номер охранного документа: 0002665175
Дата охранного документа: 28.08.2018
Показаны записи 181-184 из 184.
07.09.2019
№219.017.c8b9

Латунь для сверхпластической формовки деталей с малой остаточной пористостью

Изобретение относится к области цветной металлургии, а именно к составам латуни, и предназначено для изготовления сверхпластичных листов из сплава системы Cu-Zn-Al. Лист из двухфазной латуни для сверхпластической формовки изделий с пониженной остаточной пористостью, не превышающей 1,5%,...
Тип: Изобретение
Номер охранного документа: 0002699423
Дата охранного документа: 05.09.2019
18.10.2019
№219.017.d7d5

Магнитомягкий нанокристаллический материал на основе железа

Изобретение относится к области металлургии, в частности к аморфным и нанокристаллическим магнитомягким сплавам на основе железа, получаемым в виде тонкой ленты литьем расплава на поверхность охлаждающего тела и его скоростной закалкой и используемым, в основном, для изготовления из ленты...
Тип: Изобретение
Номер охранного документа: 0002703319
Дата охранного документа: 16.10.2019
20.05.2023
№223.018.6572

Порошковый алюминиевый материал

Изобретение относится к области металлургии, а именно к составу жаропрочного сплава на основе алюминия и порошку из него, для использования при изготовлении деталей методами аддитивных технологий. Порошковый сплав на основе алюминия содержит, мас.%: медь 6,0-7,0, магний 0,2-0,8, марганец...
Тип: Изобретение
Номер охранного документа: 0002741022
Дата охранного документа: 22.01.2021
21.05.2023
№223.018.68be

Магнитомягкий аморфный материал на основе fe-ni в виде ленты

Изобретение относится к области металлургии, в частности к аморфным магнитомягким сплавам на основе системы Fe-Ni, полученным в виде ленты в процессе закалки расплава на вращающийся медный диск, и может быть использовано в электротехнических устройствах, например, в магнитопроводах и...
Тип: Изобретение
Номер охранного документа: 0002794652
Дата охранного документа: 24.04.2023
+ добавить свой РИД