×
25.08.2017
217.015.c2c9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ВЕЩЕСТВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам измерения магнитных характеристик образца, в частности к способам измерения намагниченности. При реализации способа определения намагниченности вещества образец правильной геометрической формы помещают в магнитное поле, измеряют индукцию В образца в точке, где линии индукции нормальны поверхности образца, напряженность Н в точке, где линии напряженности параллельны поверхности образца, и определяют намагниченность образца по формуле M=B/μo-H. При этом значения намагниченности M1 и М2 измеряют для двух отличающихся на 180 градусов относительно направления индукции внешнего магнитного поля ориентаций образца. Далее вычисляют намагниченность Зеемана по формуле Мз=(М1+М2)/2 и намагниченность Нееля по формуле Мн=(М1-М2)/2. Техническим результатом изобретения является возможность контроля намагниченностей Зеемана и Нееля ферромагнитных наночастиц в порошках, применяемых для производства магнитных жидкостей. 1 ил.

Изобретение предназначается для отдельного измерения неелевской намагниченности вещества, направление которой совпадает с направлением оси легкого намагничивания вещества, и зеемановской намагниченности, направление которой совпадает с направлением внешнего магнитного поля. Оно может быть использовано при изготовлении магнитных жидкостей с наночастицами, имеющими преобладание или зеемановской или неелевской намагниченности. А также для оценки неелевских времен релаксации, для нахождения распределения направлений осей легкого намагничивания, для экспериментальной оценки энергии связи магнитного момента с веществом.

Известен способ определения намагниченности вещества без изменения индукции внешнего магнитного поля путем помещения в магнитное поле спектрометра ЯМР образцов исследуемого вещества цилиндрической и сферической формы. Намагниченность М находят по формуле М=3(А-В), где А и В – напряженности магнитного поля, при которых регистрируются максимумы сигналов ЯМР в вышеупомянутых цилиндрическом и сферическом образцах. Способ описан в Патенте РФ №2361195, "Способ измерения намагниченности", автор А.И. Жерновой, опубликован в бюл. №19 от 10 июля 2009 г. Недостаток способа в том, что для его осуществления исследуемое вещество должно давать сигнал ЯМР, кроме того, этим способом нельзя отличить намагниченность Зеемана от намагниченности Нееля.

Известен способ измерения намагниченности вещества без изменения индукции внешнего магнитного поля путем помещения в это магнитное поле образца вещества правильной геометрической формы, измерения снаружи образца индукции В в точке, где линии индукции направлены нормально поверхности образца, и напряженности Н в точке, где линии напряженности направлены параллельно поверхности образца, и нахождения намагниченности по формуле М=В/μо-Н. Недостаток способа в том, что им нельзя отличить намагниченность Зеемана, параллельную индукции магнитного поля В, от намагниченности Нееля, параллельную оси легкого намагничивания в каждой точке исследуемого ферромагнитного вещества. Способ можно принять за прототип. Он описан в журнале «Научное приборостроение», 2009, том 19, №3, с. 57-61, авторы А.И. Жерновой, В.Н. Наумов, Ю.Р. Рудаков.

В предлагаемом способе для измерения намагниченности вещества без изменения индукции внешнего магнитного поля из исследуемого вещества изготавливается образец правильной геометрической формы, например параллелепипед или цилиндр. Образец помещается во внешнее магнитное поле с индукцией, направленной параллельно или нормально оси образца. Около поверхности образца, ориентированной нормально линиям индукции внешнего магнитного поля, устанавливается датчик 1 для измерения индукции В магнитного поля, а у поверхности образца, ориентированной параллельно линиям напряженности внешнего магнитного поля, устанавливается датчик 2 для измерения напряженности Н магнитного поля. Измерив при первом положении образца датчиком 1 магнитную индукцию В1 и датчиком 2 напряженность магнитного поля H1, находим намагниченность в первом положении М1=В1/μo-Н1. После этого образец поворачивается вокруг его оси симметрии на 180 градусов относительно направления индукции внешнего магнитного поля, измеряются индукция В2 и напряженность Н2 при втором положении образца и определяется намагниченность М2=В2/μо-Н2. Если в положении 1 намагниченность Зеемана Мз и Нееля Мн были параллельны друг другу, то М1=Мз+Мн. При повороте образца относительно направления индукции внешнего поля намагниченность Зеемана остается параллельной индукции внешнего поля, а намагниченность Нееля поворачивается вместе с образцом и становится антипараллельной индукции внешнего поля, поэтому измеряемая после поворота образца намагниченность:

М2=Мз-Мн.

В результате Мз и Мн можно найти по формулам:

Мз=(М1+М2)/2,

Мн=(М1-М2)/2.

Пример осуществления способа

Для осуществления способа использована установка, описанная там же, где прототип («Научное приборостроение», 2009, том 19, №3, с. 57-61). Ее схема приведена на рис. 1.

Исследуемый магнетик помещается в два цилиндрических контейнера 10 диаметром 20 и высотой 45 мм, расположенных на расстоянии 3 мм друг от друга в магнитном поле, создаваемом магнитами 1. На боковой поверхности одного из контейнеров расположена катушка 2 датчика ЯМР для измерения магнитной индукции В, а в щели между контейнерами катушка 3 датчика ЯМР для измерения напряженности магнитного поля Н внутри магнетика. Катушка 2 расположена в точке, где линии магнитной индукции нормальны поверхности магнетика, а катушка 3 расположена в точке, где линии напряженности магнитного поля параллельны поверхности магнетика, поэтому, как следует, например, из учебника (С.Г. Калашников. «Электричество». М.: Наука, 1985. 576 с.), измеряемые значения В и Н равны индукции и напряженности магнитного поля внутри образца. Для измерения В и Н применен метод нутации, описанный в монографии (А.И. Жерновой. «Измерение магнитных полей методом нутации». Л.: Энергия, 1979. 103 с.). Для этого через катушки 2, 3 по хлорвиниловой трубке протекает вода, предварительно поляризованная в магните 4, которая поступает в катушку датчика ЯМР, расположенного в магните 5 и присоединенного к прибору 6, где дает сигнал, полярность которого меняется, когда частота, измеряемая частотомером 9, присоединенным к выходу прибора 8, совпадает частотой ЯМР в катушке 2 или 3, присоединенной к генератору 8 переключателем 7. Измеряя частоты ЯМР f2 в катушке 2 и f3 в катушке 3, можно определять намагниченности образца по формуле:

M=(f2-f3)/β,

где β - гиромагнитное отношение протонов, равное в системе единиц СИ 53,4 Гцм/А. Определив намагниченность M1, а затем повернув оба цилиндра 10 вокруг их осей на 180 градусов, определив М2, находим намагниченность Зеемана

Мз=(М1+М2)/2

и намагниченность Нееля:

Мн=(М1-М2)/2.

Практическая значимость предлагаемого способа

Многие практические применения магнитных жидкостей основаны на том, что в магнитном поле ферромагнитные наночастицы ориентируются параллельно индукции внешнего магнитного поля. Это свойство ферромагнитных наночастиц приводит к увеличению вязкости магнитной жидкости при наложении магнитного поля, что используется, например, для создания управляемых магнитным полем гидравлических сцеплений и тормозов. При добавлении магнитных жидкостей в жидкие кристаллы появляется возможность управлять жидкими кристаллами при помощи магнитных полей. Для подобных применений магнитная жидкость должна иметь ферромагнитные наночастицы с большой неелевской намагниченностью. Предлагаемый способ позволяет контролировать это свойство наночастиц при изготовлении порошков, из которых эти жидкости производятся.

Способ измерения намагниченности вещества без изменения индукции внешнего магнитного поля путем помещения в это магнитное поле образца вещества правильной геометрической формы, измерения снаружи образца индукции B в точке, где линии индукции нормальны поверхности образца, и напряженности H в точке, где линии напряженности параллельны поверхности образца, и нахождения намагниченности по формуле Μ=Β/μo-Н, отличающийся тем, что находят значения намагниченностей M1 и М2 при двух отличающихся на 180 градусов ориентациях образца исследуемого вещества относительно направления индукции внешнего магнитного поля и определяют намагниченность Зеемана Мз=(М1+М2)/2 и намагниченность Нееля Мн=(М1-М2)/2.
СПОСОБ ОПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ВЕЩЕСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ НАМАГНИЧЕННОСТИ ВЕЩЕСТВА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 21.
27.06.2015
№216.013.5902

Способ автоматического управления непрерывным расходом сыпучего материала и устройство для его осуществления

Изобретение относится к области управления расходом сыпучих материалов, перемещаемых потоком газа. Материал, свободно поступающий по напорной шахте из загрузочного бункера в смесительную камеру, смешивается в ней с газом и выдается на выход за счет давления P на входе в выпускной трубопровод,...
Тип: Изобретение
Номер охранного документа: 0002554327
Дата охранного документа: 27.06.2015
20.01.2016
№216.013.a19a

Полимерно-битумное вяжущее

Изобретение относится к полимерно-битумным вяжущим, содержащим битум нефтяной дорожный и термопластичную полимерную добавку на основе модифицированного полиэтилентерефталата, которые применяются в строительстве верхних слоев дорожного полотна. В качестве термопластичного полимера оно содержит...
Тип: Изобретение
Номер охранного документа: 0002573012
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.cfb4

Сорбент на основе активного угля, содержащего фуллерен и способ его получения

Группа изобретений относится к получению углеродных сорбентов. Способ получения гранулированного сорбционно-активного углеродного материала, используемого для сорбции органических и неорганических веществ из воды и водных растворов, включает смешение водного раствора фуллеренов с...
Тип: Изобретение
Номер охранного документа: 0002575712
Дата охранного документа: 20.02.2016
20.05.2016
№216.015.4021

Способ измерения дисперсии магнитного момента наночастицы в магнитной жидкости

Изобретение относится к измерительной технике, представляет собой способ измерения дисперсии распределения магнитных моментов наночастиц в магнитной жидкости и предназначено для контроля магнитных жидкостей, когда требуется малая дисперсия магнитных моментов наночастиц. При реализации способа...
Тип: Изобретение
Номер охранного документа: 0002584276
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.448f

Магнитный способ измерения термодинамической температуры в энергетических единицах

Изобретение относится к способам измерения температуры в энергетических единицах. В качестве датчика температуры используют контейнеры, заполненные коллоидным раствором однодоменных ферромагнитных наночастиц. Между контейнерами, а также у боковой поверхности одного из них располагают датчики...
Тип: Изобретение
Номер охранного документа: 0002586392
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.44e8

Способ дезактивации радиактивно загрязненных металлических и неметаллических поверхностей

Изобретение относится к области атомной технологии и может быть использовано при проведении работ по дезактивации в процессе эксплуатации и при выводе из эксплуатации атомных станций и других радиационноопасных объектов. Способ дезактивации радиоактивно загрязненных металлических и...
Тип: Изобретение
Номер охранного документа: 0002586967
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.460b

Однофазный керамический оксидный материал для устройства локализации расплава активной зоны

Изобретение относится к составам материалов для атомной энергетики, в частности к однофазному керамическому оксидному жертвенному материалу, включающему FeO, AlO, SrO. Материал включает в себя указанные простые оксиды в виде однофазного соединения - твердого раствора на основе гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002586224
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4ca6

Способ очистки борсодержащего концентрата на аэс

Изобретение относится к атомной энергетике, а именно к ионообменной технологии переработки борсодержащих вод в системе регенерации борной кислоты из теплоносителя на АЭС с реакторами типа ВВЭР. Способ очистки борсодержащего концентрата в системе регенерации борной кислоты на АЭС заключается в...
Тип: Изобретение
Номер охранного документа: 0002594420
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.89f3

Емкостный сенсор влажности газообразной среды

Изобретение относится к технике измерения влажности газов. Емкостной сенсор влажности содержит чувствительный элемент конденсаторного типа, состоящий из диэлектрического субстрата, нижнего электрода из коррозионно-стойкого металла или сплава, верхнего наноструктурированного электрода из...
Тип: Изобретение
Номер охранного документа: 0002602489
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8cf9

Способ получения рентгенолюминофора на основе ортофосфата цинка, активированного марганцем

Изобретение относится к химической технологии и может быть использовано в медицинских терапевтических установках. Рентгенолюминофор Zn(PO):Mn получают путем совместного осаждения основы и активатора из водных растворов Zn(NO) и Mn(NO). В качестве осадителей последовательно используют водные...
Тип: Изобретение
Номер охранного документа: 0002604619
Дата охранного документа: 10.12.2016
Показаны записи 11-20 из 26.
10.04.2015
№216.013.3b64

Огнеупорная бесцементная бетонная масса

Изобретение относится к огнеупорной промышленности, а именно к составу огнеупорной бесцементной бетонной массы для изготовления как безобжиговых, так и обжиговых огнеупорных изделий, выполнения монолитных футеровок, высокотемпературных агрегатов в черной и цветной металлургии и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002546692
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.466c

Термостойкий фоторезист

Изобретение относится к термостойкому фоторезисту, содержащему реакционный раствор поли(о-гидроксиамида) - продукта поликонденсации дихлорида изофталевой кислоты и 3,3'-дигидрокси-4,4'-диаминодифенилметана или смеси 3,3'-дигидрокси-4,4'-диаминодифенилметана и бис...
Тип: Изобретение
Номер охранного документа: 0002549532
Дата охранного документа: 27.04.2015
27.06.2015
№216.013.5902

Способ автоматического управления непрерывным расходом сыпучего материала и устройство для его осуществления

Изобретение относится к области управления расходом сыпучих материалов, перемещаемых потоком газа. Материал, свободно поступающий по напорной шахте из загрузочного бункера в смесительную камеру, смешивается в ней с газом и выдается на выход за счет давления P на входе в выпускной трубопровод,...
Тип: Изобретение
Номер охранного документа: 0002554327
Дата охранного документа: 27.06.2015
20.01.2016
№216.013.a19a

Полимерно-битумное вяжущее

Изобретение относится к полимерно-битумным вяжущим, содержащим битум нефтяной дорожный и термопластичную полимерную добавку на основе модифицированного полиэтилентерефталата, которые применяются в строительстве верхних слоев дорожного полотна. В качестве термопластичного полимера оно содержит...
Тип: Изобретение
Номер охранного документа: 0002573012
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.cfb4

Сорбент на основе активного угля, содержащего фуллерен и способ его получения

Группа изобретений относится к получению углеродных сорбентов. Способ получения гранулированного сорбционно-активного углеродного материала, используемого для сорбции органических и неорганических веществ из воды и водных растворов, включает смешение водного раствора фуллеренов с...
Тип: Изобретение
Номер охранного документа: 0002575712
Дата охранного документа: 20.02.2016
20.05.2016
№216.015.4021

Способ измерения дисперсии магнитного момента наночастицы в магнитной жидкости

Изобретение относится к измерительной технике, представляет собой способ измерения дисперсии распределения магнитных моментов наночастиц в магнитной жидкости и предназначено для контроля магнитных жидкостей, когда требуется малая дисперсия магнитных моментов наночастиц. При реализации способа...
Тип: Изобретение
Номер охранного документа: 0002584276
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.448f

Магнитный способ измерения термодинамической температуры в энергетических единицах

Изобретение относится к способам измерения температуры в энергетических единицах. В качестве датчика температуры используют контейнеры, заполненные коллоидным раствором однодоменных ферромагнитных наночастиц. Между контейнерами, а также у боковой поверхности одного из них располагают датчики...
Тип: Изобретение
Номер охранного документа: 0002586392
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.44e8

Способ дезактивации радиактивно загрязненных металлических и неметаллических поверхностей

Изобретение относится к области атомной технологии и может быть использовано при проведении работ по дезактивации в процессе эксплуатации и при выводе из эксплуатации атомных станций и других радиационноопасных объектов. Способ дезактивации радиоактивно загрязненных металлических и...
Тип: Изобретение
Номер охранного документа: 0002586967
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.460b

Однофазный керамический оксидный материал для устройства локализации расплава активной зоны

Изобретение относится к составам материалов для атомной энергетики, в частности к однофазному керамическому оксидному жертвенному материалу, включающему FeO, AlO, SrO. Материал включает в себя указанные простые оксиды в виде однофазного соединения - твердого раствора на основе гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002586224
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4ca6

Способ очистки борсодержащего концентрата на аэс

Изобретение относится к атомной энергетике, а именно к ионообменной технологии переработки борсодержащих вод в системе регенерации борной кислоты из теплоносителя на АЭС с реакторами типа ВВЭР. Способ очистки борсодержащего концентрата в системе регенерации борной кислоты на АЭС заключается в...
Тип: Изобретение
Номер охранного документа: 0002594420
Дата охранного документа: 20.08.2016
+ добавить свой РИД