×
20.05.2016
216.015.4021

СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике, представляет собой способ измерения дисперсии распределения магнитных моментов наночастиц в магнитной жидкости и предназначено для контроля магнитных жидкостей, когда требуется малая дисперсия магнитных моментов наночастиц. При реализации способа получают зависимость намагниченности M от магнитной индукции B, определяют по этой зависимости намагниченность насыщения M и средний магнитный момент P на конечном участке кривой намагничивания, вычисляют значение индукции магнитного поля B*, при которой параметр Ланжевена (к - постоянная Больцмана, Т - температура), находят начальную магнитную восприимчивость , при этом находят эффективную намагниченность насыщения и по формуле Д=(M*-M)(P)/M определяют дисперсию распределения магнитных моментов. Технический результат заключается в повышении объективности и точности магнитно-гранулометрического анализа магнитных жидкостей. 1 табл., 2 ил.
Основные результаты: Способ измерения дисперсии магнитного момента наночастицы в магнитной жидкости путем получения зависимости намагниченности M от магнитной индукции B, определения намагниченности насыщения M, определения при намагниченности М, приближающейся к M, среднего магнитного момента наночастицы P, определения начальной магнитной восприимчивости (M, B - намагниченность и магнитная индукция на начальном участке кривой намагничивания), отличающийся тем, что вычисляется значение эффективной намагниченности (к - постоянная Больцмана, T - температура), а дисперсия магнитного момента определяется по формуле .
Реферат Свернуть Развернуть

Изобретение предназначено для контроля магнитных жидкостей, когда по условиям их применения недопустимо заметное различие размеров и магнитных моментов наночастиц. Например, в случае медицинского применения, когда частицы с большими магнитными моментами (крупные частицы) создают помеху кровотоку, а на частицы с малыми магнитными моментами со стороны магнитного поля действуют малые силы, недостаточные для их перемещения по кровяному руслу в нужное место организма, или в случае применения в качестве термометрических веществ, когда, как показано в литературе (Жерновой А.И. и др. Научное приборостроение, 2012, том 22, №3, с. 58-60), различие магнитных моментов приводит к зависимости константы Кюри от температуры.

Известен способ определения закона распределения магнитных моментов наночастиц в магнитной жидкости (магнитно-гранулометрический анализ). (Pshenichnicov A.F., Mekhonoshin V.V., Lebedev A.V. Magneto-granulometric analisis of concentrated ferrocolloids// Journal of Magnetism and Magnetic Materials, 1996, №161, p. 94-102.)

Способ состоит в произвольном выборе вида функции распределения (обычно логнормальной или гамма), выборе модели межчастичных взаимодействий (например, модели среднего действующего поля или Лоренца). На основе выбранной функции распределения и модели межчастичных взаимодействий производится теоретический расчет кривой намагничивания и ее сравнение с экспериментальной. При совпадении теоретической и экспериментальной кривых намагничивания, по функции распределения можно найти дисперсию распределения магнитных моментов наночастиц. Недостаток способа в его субъективности, так как выборы функции распределения и модели межчастичных взаимодействий являются произвольными. Другой недостаток в сложности проверки адекватности теоретической и экспериментальной кривых намагничивания. Этот метод можно принять за прототип.

Известен способ определения дисперсии размеров наночастиц в магнитной жидкости при помощи электронной микроскопии. (Ряполов П.А. Исследование структурных параметров нанодисперсных магнитных жидкостей // Научные ведомости. Серия Математика. Физика. 2011 №11(106). Вып.23.) В этом способе при помощи просвечивающего электронного микроскопа получают изображение наночастиц, содержащихся в пленке высушенной магнитной жидкости. Подсчетом количества частиц разного размера строят кривую распределения частиц по размерам, из которой можно определить дисперсию распределения. Так как магнитный момент частицы с поправкой на присутствие немагнитной аморфной фазы пропорционален ее объему, то по дисперсии распределения частиц по размерам можно найти дисперсию распределения по магнитным моментам. Недостаток метода в необходимости испарения жидкости при изготовлении образца, что может повлиять на распределении частиц по размерам в результате образования конгломератов. Другой недостаток в присутствии намагнитной фазы, которое уменьшает дисперсию распределения по магнитным моментам по сравнению с дисперсией распределения по размерам частиц.

Предлагаемый способ не имеет указанных недостатков. В этом способе для измерения дисперсии магнитного момента парамагнитной наночастицы в магнитной жидкости получается экспериментальная зависимость намагниченности жидкости М от индукции магнитного поля В, представленная на рис. 1, по этой зависимости строится представленный на рис. 2 график зависимости M от (1/B), по которому при (1/B)=0 определяется намагниченность насыщения Mнас, а по формуле Pср=кT/B[1-(M/Mнас)] среднее значение магнитного момента наночастиц Pср на участке кривой намагничивания при намагниченности M, приближающейся к Mнас. Затем вычисляется значение индукции магнитного поля B*, при котором параметр Ланжевена После этого на начальном участке кривой намагничивания по экспериментальным точкам находится начальная магнитная восприимчивости æнач=(Мначµo/Bнач) (Mнач, Bнач - значения намагниченности и магнитной индукции на начальном участке кривой намагничивания) и определяется эффективная намагниченность насыщения Mнас*=(æначB*/µ0)=æнач3кТ/Pср. Дисперсия магнитных моментов находится по формуле: Д=(Mнас*-Mнас)(Pср)2/М*.

Обоснование предлагаемого способа

Предлагаемый способ основан на том, что на начальном участке кривой намагничивания парамагнетика его намагниченность M по теории Ланжевена пропорциональна квадрату магнитного момента P парамагнитных частиц: Mнач=(nP2B/3kT), где n - концентрация частиц, B, T - индукция магнитного поля и температура, k - постоянная Больцмана. Намагниченность насыщения, измеряемая на конечном участке кривой намагничивания, пропорциональна магнитному моменту в первой степени: Mнас=nP. При наличии дисперсии магнитных моментов частиц измеряемые намагниченности Mнач и Mнас усредняются. В результате, получается Mнач=[n(P2)срB/3кT], Mнас=nPср, где (P2)ср и Pср - средние значения P2 и P. Так как значение магнитного момента конкретной частицы является случайной величиной, при любой функции распределения частиц по значениям P, дисперсию распределения Д можно находить по формуле Д=(P2)ср-(Pср)2 (Д. Корн, Т. Корн, Справочник по математике, М. Наука, 1984, 832 с.), определив (P2)ср и (Pср)2 по виду экспериментальной кривой намагничивания.

Для практического измерения Д предлагается следующий путь.

1) Получаем экспериментальную кривую намагничивания (зависимость намагниченности M от индукции магнитного поля B), представленную на рис. 1.

2) По значениям M и B на конечном участке кривой намагничивания строим зависимость M от (1/B), представленную на рис. 1 и 2, которая теоретически имеет вид M=Mнас-(nkT/B). По этой зависимости при (1/B)=0 экстраполяцией находим Mнас=nPср. (На рис. 1 и 2 Mнас обозначена горизонтальной прямой линией).

3) По зависимости M от (1/B), воспользовавшись тем, что Mнас-M=(nкT/B), при некотором значении B находим nкT/B и, зная B, определяем концентрацию частиц

и средний магнитный момент частиц

4) Зная Pср, находим значение индукции B=B*, при которой параметр Ланжевена

5) По имеющимся экспериментальным значениям M=Mнач и B=Bнач на начальном участке кривой намагничивания находим среднюю начальную магнитную восприимчивость æнач=Mначµ0/Bнач и эффективное значение намагниченности насыщения Mнас*=(æначB*/µ0), которое равно Mнас при P=((P2)ср)0,5. (На рис. 1 Mнас* обозначено горизонтальной прямой линией). Подставив в M*=n(P2)срB*/3кT значение B*=3кT/Pср, получаем Mнас*=n(P2)ср/Pср, откуда (Mнас*/Mнас)=(P2)ср/(Pср)2. В результате, дисперсия магнитного момента наночастицы

Проверка осуществимости предлагаемого способа

Для проверки осуществимости предлагаемого способа измерения дисперсии магнитного момента наночастицы в магнитной жидкости были исследованы четыре магнитные жидкости на основе магнетита, отличающиеся технологией синтеза, концентрацией твердой фазы и растворителем. Получение кривых намагничивания проводилось на экспериментальной установке, описанной ранее в работе (А.И. Жерновой, В.Н. Наумов, Ю.Р. Рудаков, Получение кривой намагничивания дисперсии парамагнитных наночастиц путем нахождения намагниченности намагничивающего поля методом ЯМР // Научное приборостроение, 2009, том 19, №3, с. 57-61), где намагниченность находилась по напряженности H и индукции B магнитного поля внутри магнитной жидкости, измеряемым датчиками ЯМР, расположенными снаружи образца:

M=(B/µ0)-H.

Полученные результаты приведены в таблице 1. Они показывают, что у всех исследованных жидкостей, независимо от концентрации и магнитного момента наночастиц, растворителя, технологии приготовления, разность Mнас*-Mнас, которая пропорциональна дисперсии, больше 1, что является предпосылкой осуществимости предлагаемого способа. Полученные значения дисперсии и среднеквадратичного отклонения магнитных моментов не противоречат здравому смыслу.

Способ измерения дисперсии магнитного момента наночастицы в магнитной жидкости путем получения зависимости намагниченности M от магнитной индукции B, определения намагниченности насыщения M, определения при намагниченности М, приближающейся к M, среднего магнитного момента наночастицы P, определения начальной магнитной восприимчивости (M, B - намагниченность и магнитная индукция на начальном участке кривой намагничивания), отличающийся тем, что вычисляется значение эффективной намагниченности (к - постоянная Больцмана, T - температура), а дисперсия магнитного момента определяется по формуле .
СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ДИСПЕРСИИ МАГНИТНОГО МОМЕНТА НАНОЧАСТИЦЫ В МАГНИТНОЙ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 14.
20.06.2013
№216.012.4da7

Способ измерения температуры внутри вещества или живого организма

Изобретение относится к области термометрии и может быть использовано для дистанционного измерения локальной температуры внутри вещества или живого организма. Заявлен способ измерения температуры с использованием в качестве термометрического свойства намагниченности однодоменных ферромагнитных...
Тип: Изобретение
Номер охранного документа: 0002485461
Дата охранного документа: 20.06.2013
10.09.2014
№216.012.f301

Способ измерения термодинамической температуры

Предложен способ измерения термодинамической температуры. В способе определяют намагниченность суспензии суперпарамагнитных наночастиц. Намагниченность суспензии поддерживают постоянной, а температуру находят по значению магнитной индукции внутри суспензии. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002528031
Дата охранного документа: 10.09.2014
20.02.2015
№216.013.2822

Способ определения намагниченности насыщения магнитной жидкости

Использование: для определения намагниченности насыщения магнитной жидкости. Сущность изобретения заключается в том, что помещают жидкость во внешнее магнитное поле, индукцию которого можно менять, измеряют напряженность H и индукцию B магнитного поля внутри жидкости и определяют...
Тип: Изобретение
Номер охранного документа: 0002541731
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2930

Шихта и высокотемпературный материал с низким значением коэффициента температурного линейного расширения, полученный из нее

Изобретение относится к огнеупорной промышленности, в частности к огнеупорному материалу с низким коэффициентом температурного линейного расширения (КТЛР) для изготовления огнеупорных изделий, например защитных чехлов термоэлементов, экранов и изолирующих трубок, раздаточных изделий для...
Тип: Изобретение
Номер охранного документа: 0002542001
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.4683

Способ определения мощности в пульсационном аппарате и устройство для его реализации

Изобретение относится к области измерения мгновенной и средней мощности, затрачиваемой на генерирование колебаний рабочей среды в пульсационных аппаратах. Способ определения мощности в пульсационном аппарате, оборудованном электромеханическим приводом, содержащим двигатель, соединенный с...
Тип: Изобретение
Номер охранного документа: 0002549555
Дата охранного документа: 27.04.2015
10.08.2015
№216.013.6ca3

Способ получения n-замещенных-5-фенилтетразолов и микрореактор для его реализации

Изобретение относится к способу получения N-замещённых-5-фенилтетразолов, заключающемуся в алкилировании 5-фенилтетразола алкилйодидом в двухфазной системе хлористый метилен - водный раствор гидроокиси натрия при комнатной температуре, согласно изобретению, процесс проводят в микрореакторе без...
Тип: Изобретение
Номер охранного документа: 0002559369
Дата охранного документа: 10.08.2015
27.12.2015
№216.013.9d50

Тонкослойный отстойник

Изобретение относится к области очистки оборотных и сточных вод, а также иных жидкостей от механических примесей и эмульгированных в них капель, и может быть использовано в нефтяной, нефтеперерабатывающей, нефтехимической, угольной, химической и других отраслях промышленности. Тонкослойный...
Тип: Изобретение
Номер охранного документа: 0002571902
Дата охранного документа: 27.12.2015
20.04.2016
№216.015.3535

Вихревой струйный аппарат для дегазации жидкостей

Изобретение относится к устройствам для вакуумной или комбинированной термической и вакуумной дегазации жидкостей, в том числе воды, с использованием центробежного эффекта. Вихревой струйный аппарат для дегазации жидкостей содержит корпус цилиндроконической формы с горловиной между конфузором и...
Тип: Изобретение
Номер охранного документа: 0002581630
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.448f

Магнитный способ измерения термодинамической температуры в энергетических единицах

Изобретение относится к способам измерения температуры в энергетических единицах. В качестве датчика температуры используют контейнеры, заполненные коллоидным раствором однодоменных ферромагнитных наночастиц. Между контейнерами, а также у боковой поверхности одного из них располагают датчики...
Тип: Изобретение
Номер охранного документа: 0002586392
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.ae9f

Способ получения катализатора и катализатор алкилирования изобутана изобутеном

Изобретение относится к области получения катализаторов алкилирования изобутана изобутеном. Описывается способ получения катализатора на основе цеолита типа NaNHY с остаточным содержанием NaO не более 0,8 мас.%, включающий пропитку при перемешивании кристаллов цеолита водным раствором нитрата...
Тип: Изобретение
Номер охранного документа: 0002612965
Дата охранного документа: 14.03.2017
Показаны записи 1-10 из 16.
20.06.2013
№216.012.4da7

Способ измерения температуры внутри вещества или живого организма

Изобретение относится к области термометрии и может быть использовано для дистанционного измерения локальной температуры внутри вещества или живого организма. Заявлен способ измерения температуры с использованием в качестве термометрического свойства намагниченности однодоменных ферромагнитных...
Тип: Изобретение
Номер охранного документа: 0002485461
Дата охранного документа: 20.06.2013
10.09.2014
№216.012.f301

Способ измерения термодинамической температуры

Предложен способ измерения термодинамической температуры. В способе определяют намагниченность суспензии суперпарамагнитных наночастиц. Намагниченность суспензии поддерживают постоянной, а температуру находят по значению магнитной индукции внутри суспензии. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002528031
Дата охранного документа: 10.09.2014
20.02.2015
№216.013.2822

Способ определения намагниченности насыщения магнитной жидкости

Использование: для определения намагниченности насыщения магнитной жидкости. Сущность изобретения заключается в том, что помещают жидкость во внешнее магнитное поле, индукцию которого можно менять, измеряют напряженность H и индукцию B магнитного поля внутри жидкости и определяют...
Тип: Изобретение
Номер охранного документа: 0002541731
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2930

Шихта и высокотемпературный материал с низким значением коэффициента температурного линейного расширения, полученный из нее

Изобретение относится к огнеупорной промышленности, в частности к огнеупорному материалу с низким коэффициентом температурного линейного расширения (КТЛР) для изготовления огнеупорных изделий, например защитных чехлов термоэлементов, экранов и изолирующих трубок, раздаточных изделий для...
Тип: Изобретение
Номер охранного документа: 0002542001
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.4683

Способ определения мощности в пульсационном аппарате и устройство для его реализации

Изобретение относится к области измерения мгновенной и средней мощности, затрачиваемой на генерирование колебаний рабочей среды в пульсационных аппаратах. Способ определения мощности в пульсационном аппарате, оборудованном электромеханическим приводом, содержащим двигатель, соединенный с...
Тип: Изобретение
Номер охранного документа: 0002549555
Дата охранного документа: 27.04.2015
10.08.2015
№216.013.6ca3

Способ получения n-замещенных-5-фенилтетразолов и микрореактор для его реализации

Изобретение относится к способу получения N-замещённых-5-фенилтетразолов, заключающемуся в алкилировании 5-фенилтетразола алкилйодидом в двухфазной системе хлористый метилен - водный раствор гидроокиси натрия при комнатной температуре, согласно изобретению, процесс проводят в микрореакторе без...
Тип: Изобретение
Номер охранного документа: 0002559369
Дата охранного документа: 10.08.2015
27.12.2015
№216.013.9d50

Тонкослойный отстойник

Изобретение относится к области очистки оборотных и сточных вод, а также иных жидкостей от механических примесей и эмульгированных в них капель, и может быть использовано в нефтяной, нефтеперерабатывающей, нефтехимической, угольной, химической и других отраслях промышленности. Тонкослойный...
Тип: Изобретение
Номер охранного документа: 0002571902
Дата охранного документа: 27.12.2015
20.04.2016
№216.015.3535

Вихревой струйный аппарат для дегазации жидкостей

Изобретение относится к устройствам для вакуумной или комбинированной термической и вакуумной дегазации жидкостей, в том числе воды, с использованием центробежного эффекта. Вихревой струйный аппарат для дегазации жидкостей содержит корпус цилиндроконической формы с горловиной между конфузором и...
Тип: Изобретение
Номер охранного документа: 0002581630
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.448f

Магнитный способ измерения термодинамической температуры в энергетических единицах

Изобретение относится к способам измерения температуры в энергетических единицах. В качестве датчика температуры используют контейнеры, заполненные коллоидным раствором однодоменных ферромагнитных наночастиц. Между контейнерами, а также у боковой поверхности одного из них располагают датчики...
Тип: Изобретение
Номер охранного документа: 0002586392
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.ae9f

Способ получения катализатора и катализатор алкилирования изобутана изобутеном

Изобретение относится к области получения катализаторов алкилирования изобутана изобутеном. Описывается способ получения катализатора на основе цеолита типа NaNHY с остаточным содержанием NaO не более 0,8 мас.%, включающий пропитку при перемешивании кристаллов цеолита водным раствором нитрата...
Тип: Изобретение
Номер охранного документа: 0002612965
Дата охранного документа: 14.03.2017
+ добавить свой РИД