×
25.08.2017
217.015.c282

Результат интеллектуальной деятельности: СПОСОБ АНАЛИЗА ВЕЩЕСТВА ТЕРМОАНАЛИТИЧЕСКИМ МЕТОДОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерений и контроля термических характеристик веществ и материалов, и может быть использовано для идентификации вещества при принятии мер по обеспечению пожарной и промышленной безопасности. Способ анализа вещества термоаналитическим методом заключается в определении его пожаровзрывоопасности по величине экзотермического эффекта процесса окисления и начальной температуре тепловыделения. Одновременно по величине экзотермического эффекта процесса окисления проводят идентификацию вещества, а для определения пожаровзрывоопасности вещества дополнительно используют величину усредненной интенсивности тепловыделения, рассчитываемую по формуле I=ΔQ/ΔТ, где ΔQ - экзотермический эффект окисления (Дж/г), а ΔТ - ширина температурного интервала экзотермического пика окисления на половине его высоты (°C). Технический результат - возможность одновременной идентификации вещества и определения его пожаровзрывоопасности; повышение надежности и точности при оценке пожаровзрывоопасности веществ и материалов; расширение возможностей для исследования пожарозрывоопасности; сокращение времени и трудозатрат; экспрессность способа. 3 табл., 4 ил.

Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерений и контроля термических характеристик веществ и материалов. Изобретение может использоваться для идентификации вещества при принятии мер по обеспечению пожарной и промышленной безопасности, в особенности высокодисперсных порошков металлов, и может применяться при разработке и контроле технологических процессов, связанных с обращением, переработкой и использованием указанных материалов при изготовлении деталей и элементов различных устройств.

Вопросы и проблемы, связанные с обеспечением пожарной и промышленной безопасности всегда обращали на себя пристальное внимание исследователей, разработчиков, конструкторов, а также представителей многих других специальностей.

Номенклатура показателей пожаровзрывоопасности веществ и материалов, а также методы их определения достаточно подробно представлены в [ГОСТ 12.1.044-89 (ИСО 4589-84) - Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения. - Москва, Стандартинформ, 2006]. При этом для твердых веществ (пылей, порошков) насчитывается более десятка показателей пожаровзрывоопасности, таких как температура самовоспламенения, концентрационные пределы воспламенения, группа горючести, скорость нарастания давления взрыва и др.

Вследствие явного переизбытка показателей пожаровзрывоопасности, определение совокупности всех показателей представляет весьма трудоемкую задачу и вряд ли оправдано. По этой причине на практике в этом же ГОСТе рекомендуют ограничиться количеством показателей. Укажем, что идентификация вещества (материала) на предмет его химического состава в аналоге не предусмотрена.

Отметим далее следующие важные обстоятельства. Измерение на практике характеристик и показателей пожаровзрывоопасности согласно [ГОСТ 12.1.044-89 (ИСО 4589-84)] требует применения специализированного стендового оборудования, которого нет в подавляющем большинстве исследовательских и заводских лабораторий. Кроме того, получаемые характеристики жестко «привязаны» к конкретной геометрии оборудования и условиям измерений, и по этой причине использовать эти величины в качестве универсальных, например, при математическом моделировании соответствующих процессов, может представлять серьезные трудности. Таким образом, необходимо рассмотреть возможности применения для оценок показателей пожаровзрывоопасности оборудования и методик, достаточно универсальных (стандартных) и широко распространенных в исследовательских лабораториях.

Такие методики могут быть основаны на термическом анализе, как совокупности широко распространенных универсальных методов. Применение универсальных и стандартных методик, какими являются методики, основанные на термическом анализе, обеспечит экспрессный подход к оценке пожаровзрывоопасности материалов, который может быть реализован в очень многих исследовательских и заводских лабораториях.

Необходимость и актуальность экспрессного подхода к материалам, особенно находящимся в форме металлических порошков, обусловлена тем, что пожаровзрывоопасность весьма существенно зависит от характеристик порошка, таких как гранулометрический (дисперсный) состав, наличие примесей, удельная поверхность порошка, состояние поверхности частиц порошка и др. Данные характеристики, в свою очередь, определяются, в основном, технологией изготовления конкретного материала, которая с течением времени подвержена неизбежному «дрейфу» вследствие целого ряда причин, таких как утрата традиционных поставщиков сырья, износ технологического оборудования и т.д.

Один из наиболее часто используемых методов термического анализа - это метод термогравиметрии (ТГ), основанный на непрерывной регистрации зависимости массы образца от температуры Т, растущей с течением времени «t» равномерно по закону Т=Т0+αt, и применяется обычно в тех случаях, когда образец при нагревании выделяет или поглощает газообразные вещества. Обычно ТГ-метод применяют совместно с методом дифференциального термического анализа (ДТА) или дифференциальной сканирующей калориметрии (ДСК), которые позволяют регистрировать тепловые потоки, обусловленные физико-химическими превращениями, протекающими в образце материала в процессе его нагревания [У. Уэндландт. Термические методы анализа. - М: Мир, 1978 г.; Химия. Большой Энциклопедический Словарь. - М.: 1998 г.; Л.Г. Берг. Введение в термографию. - М.: Наука, 1969 г.; Н.Д. Топор, Л.П. Огородова, Л.В. Мельчакова. Термический анализ минералов и неорганических соединений. - М.: Изд. МГУ, 1987 г.; Handbook of Thermal Analysis and Calorimetry, volume 2, ed. Michael E. Brown, Patrick K. Gallagher. - Elsevier, 2003].

Наиболее близким к заявляемому способу является способ анализа вещества термоаналитическим методом, изложенный в инструкции [Идентификация твердых веществ, материалов и средств огнезащиты при испытаниях на пожарную опасность. - Инструкция, Москва: ФГУ Всероссийский Научно-исследовательский Институт Противопожарной Обороны (ВНИИПО) МЧС РФ, 2004 (база нормативной документации на www.complexdoc.ru).]. Способ заключается в определении пожаровзрывоопасности веществ и материалов по начальной температуре окисления и экзотермическому эффекту окисления. При определении пожаровзрывоопасности твердых веществ, материалов и средств огнезащиты на пожарную опасность в способе-прототипе используются методы термического анализа, в основном, это термогравиметрия ТГ и, в существенно меньшей степени, ДТА (ДСК).

К недостаткам прототипа можно отнести то, что здесь так же, как и в аналоге, отсутствует возможность идентификации исследуемого вещества на предмет его химического состава. Кроме того, не использованы все возможности для определения пожароопасности на основании анализа уже полученных экспериментальных ТГ-ДТА кривых.

Задачей настоящего изобретения является повышение надежности и точности оценки пожаровзрывоопасности вещества при одновременной его идентификации.

Технический результат, достигаемый при использовании настоящего изобретения, заключается в следующем:

- расширение возможностей термоаналитического метода для исследования пожаровзрывоопасности веществ с одновременной их идентификацией по химическому составу;

- одновременное получение дополнительной важной информации о пожаровзрывоопасности веществ, что позволяет повысить надежность и точность оценки пожаровзрывоопасности;

- экспрессность метода анализа;

- незначительная трудоемкость проведения измерений.

Для решения указанной задачи и достижения технического результата заявляется способ анализа вещества термоаналитическим методом, заключающийся в определении его пожаровзрывоопасности по величине экзотермического эффекта процесса окисления и начальной температуре окисления, в котором согласно изобретению по величине экзотермического эффекта процесса окисления одновременно проводят идентификацию вещества, а для определения пожароопасности вещества дополнительно используют величину усредненной интенсивности тепловыделения, рассчитываемую по формуле I=ΔQ/ΔT, где ΔQ - экзотермический эффект окисления (Дж/г), a ΔT - ширина температурного интервала экзотермического пика окисления на половине его высоты (°C).

В прототипе отсутствует величина интенсивности тепловыделения - важнейшая характеристика, определяющая склонность вещества к тепловому взрыву и, таким образом, существенно влияющая на пожаровзрывоопасность. В нашем случае принимаем за интенсивность тепловыделения ее усредненную величину, равную I=ΔQ/ΔT, где ΔQ - экзотермический эффект окисления (Дж/г), a ΔT - ширина температурного интервала экзотермического пика окисления на половине его высоты (°C) (см. фиг. 1, фиг. 3). Величина ΔQ определяется при этом, как обычно, по площади под ДТА (ДСК) - кривой [У. Уэндландт. Термические методы анализа. - М.: Мир, 1978 г.; Н.Д. Топор, Л.П. Огородова, Л.В. Мельчакова. Термический анализ минералов и неорганических соединений. - М.: Изд. МГУ, 1987 г.].

Отметим, что важность величины интенсивности тепловыделения, как одной из характеристик, определяющих пожаровзрывоопасность, следует из теории теплового взрыва, разработанной академиком И.Н. Семеновым [Я.Б. Зельдович, Г.И. Баренблатт, В.Б. Либрович, Г.М. Махвиладзе. Математическая теория горения и взрыва. - М.: Наука, 1980, стр. 54]. Качественно можно сказать, что, чем выше интенсивность тепловыделения, тем выше пожаровзрывоопасность. Иными словами, при одной и той же величине экзотермического эффекта окисления более узкий пик окисления соответствует большей пожаровзрывоопасности, а более широкий и пологий - меньшей пожароопасности.

В настоящем изобретении заявляется способ анализа веществ, основанный на термоаналитическом методе, включающем термогравиметрический (ТГ) и дифференциальный термический анализ ДТА. Вместо ДТА при этом может использоваться аналогичная по своей сущности дифференциальная сканирующая калориметрия (ДСК). Заявленный способ заключается в идентификации вещества на предмет его химического состава по величине экзотермического эффекта процесса окисления, а эта возможность отсутствует в прототипе. Здесь используется тот факт, что экзотермический эффект процесса окисления совпадает с удельной теплотой образования окисла конкретного вещества, являющейся фундаментальной величиной, которая отражена в справочниках физико-химических величин.

Заявленный способ является экспрессным, экономичным и позволяет на основании результатов, по существу, единичного совмещенного эксперимента ТГ-ДТА (ДСК) идентифицировать вещество и сделать квалифицированное заключение о его пожаровзрывоопасности, повышая надежность и точность оценки пожаровзрывоопасности.

На фиг. 1 представлены результаты дифференциального термического анализа (ДТА) проб порошков тантала, где кривая 1 соответствует порошку тантала, полученному по традиционной «конденсаторной» технологии; кривая 2 - порошку тантала, полученному по технологии «гидрирования-дегидрирования». По оси абсцисс отложена текущая температура пробы порошка, по оси ординат - тепловой поток (мощность тепловыделения), обусловленный процессами окисления тантала. Температуры Тнач 1 и Тнач 2 соответствуют началу тепловыделения, а величины ΔТ1, ΔТ2 характеризуют ширину температурного интервала экзотермического пика окисления на половине его высоты (°C). Условия проведения опытов: продувка воздухом ~3 л/ч; скорость нагревания - 10°C/мин.

На фиг. 2 представлены результаты термогравиметрического (ТГ) анализа порошков тантала, где кривая 1 соответствует порошку тантала, полученному по традиционной «конденсаторной» технологии; кривая 2 - порошку тантала, полученному по технологии «гидрирования-дегидрирования». По оси абсцисс отложена текущая температура пробы порошка, по оси ординат - прирост массы вследствие образования нелетучих оксидов тантала, при этом незначительное снижение массы на начальном этапе нагрева обусловлено удалением влаги и, возможно, других летучих примесей. То1, То2 - температуры начала прироста массы вследствие окисления, определяемые из ТГ-опытов. Условия проведения опытов: продувка воздухом - 3 л/ч; скорость нагрева - 10°C/мин.

На фиг. 3 представлены результаты дифференциального термического анализа (ДТА) проб порошков вольфрама. По оси абсцисс отложена текущая температура пробы порошка, по оси ординат - тепловой поток (мощность тепловыделения), обусловленный процессами окисления вольфрама. Величина ΔТ характеризует ширину температурного интервала экзотермического пика окисления на половине его высоты (°C). Условия проведения опытов: продувка воздухом ~3 л/ч; скорость нагревания - 10°C/мин.

На фиг. 4 представлены результаты термогравиметрического (ТГ) анализа порошков вольфрама. По оси абсцисс отложена текущая температура пробы порошка, по оси ординат - прирост массы вследствие образования нелетучих оксидов вольфрама, при этом незначительное снижение массы на начальном этапе нагрева обусловлено удалением влаги и, возможно, других летучих примесей. То1, То2 - температуры начала прироста массы вследствие окисления, определяемые из ТГ-опытов. Условия проведения опытов: продувка воздухом ~3 л/ч; скорость нагревания - 10°C/мин.

Заявленный способ осуществляется следующим образом, что поясним на примере тантала. Проводились исследования высокодисперсных порошков тантала, изготовленных по традиционной «конденсаторной» технологии и по технологии «гидрирования-дегидрирования». Важно отметить, что характеристики пожаровзрывоопасности для порошков по традиционной «конденсаторной» технологии были получены ранее по методикам [ГОСТ 12.1.044-89 (ИСО 4589-84)] и нашли отражение в справочнике [Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник / Под ред. А.Н. Баратова и А.Я. Корольченко, Книга 1, 2. - Москва, «Химия», 1990], в то время как для новой технологии «гидрирования-дегидрирования» эти характеристики вплоть до настоящего времени не были измерены.

Проведена опытная отработка заявленного способа анализа вещества термоаналитическим методом. Исследование порошковых материалов методами совмещенного ТГ-ДТА анализа проводили на термоанализаторе SETARAM TGA 92-24 (Франция). Погрешность термоанализатора по измерению массы равна ±10-6 г, по измерению температуры - ±0,5°C; энергетическая чувствительность составляет 100 мкВт.

Для каждого из 2-х исследованных образцов порошкообразного тантала, полученных по различным технологиям, было взято по три пробы, с которыми и были проведены ТГ-ДТА опыты.

В процессе каждого ТГ-ДТА опыта пробу исследуемого порошка массой ~20…30 мг помещали в керамический тигель, который устанавливали в измерительной ячейке ТГ-ДТА термоанализатора. Затем проводили нагрев ячейки с непрерывной продувкой воздухом, поддерживая объемный его расход равным ~3 л/ч (при Р~1 атм.). Нагрев осуществлялся от температуры окружающей среды, составляющей ~25°C, до температуры, по достижении которой прирост массы пробы, обусловленный окислением порошка и образованием нелетучих оксидов, прекращался. Прекращение прироста массы обусловлено образованием высших окислов данного металла.

При проведении ТГ-ДТА опытов производилась непрерывная регистрация изменения с течением времени массы пробы (ТГ-кривая), записывалась ее производная (ДТГ-кривая) и кривая теплового потока или, по-другому, кривая дифференциального термического анализа (ДТА). Зарегистрированные экспериментальные кривые автоматически выводились на монитор с одновременной записью на жесткий диск управляющего компьютера.

Анализируя полученные экспериментальные результаты, вначале проводим идентификацию вещества, т.е. проверяем, действительно ли с танталом проводились опыты. Из фиг. 2 видим, что итоговый прирост массы составил ~22% масс. В случае тантала этот прирост соответствует, как нетрудно оценить, образованию высшего окисла (Та2О5), соответствующий экзотермический эффект окисления ΔQ равен, согласно справочнику [Химическая энциклопедия, т. 4, стр. 496. - М.: Большая Российская Энциклопедия, 1995], величине 4633,8 Дж/г, что и указано в таблицах 1, 2. Исходя из того, что измеренные (4474,9 Дж/г и 4646,6 Дж/г) и справочное (4633,8 Дж/г) значения в обоих случаях весьма близки друг к другу (разница не более 3,5%), делаем вывод о том, что исследуемый порошок является именно танталом.

В случае когда исследуемый порошок является смесью нескольких компонентов, количество которых равно «k», и имеющих массу m1, m2, m3, …, mi, …, mк, и суммарную массу М, расчетный усредненный экзотермический эффект окисления можно оценить согласно формуле:

где ΔQi - табличное значение экзотермического эффекта процесса окисления i-го компонента, при этом предполагается, что сами компоненты не взаимодействуют между собой в процессе нагревания.

Одной из наиболее критичных величин, характеризующих пожаровзрывоопасность и определяемых согласно [ГОСТ 12.1.044-89 (ИСО 4589-84)], является температура самовоспламенения (Тсамовоспл, °C). Температура самовоспламенения обусловлена началом протекания экзотермических (с выделением тепла) реакций окисления частиц металла, которые в условиях реакционного сосуда (кюветы, ванны) приводят к дальнейшему росту температуры, вплоть до самовоспламенения навески порошка.

Таким образом, указанной температуре Тсамовоспл можно сопоставить температуру начала тепловыделения (Тнач, °C), обусловленного окислением. Последняя из указанных температур определяется на основании результатов ТГ-ДТА (ДСК) экспериментов и, усредненная по 3-м опытам для порошка тантала, изготовленного по традиционной «конденсаторной» технологии, дает величину Тнач 1=302,9°C (см. фиг. 1 и табл. 1). Данное значение практически совпадает со справочным значением температуры Тсамовоспл=300°C [Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник / Под ред. А.Н. Баратова и А.Я. Корольченко, Книга 1, 2. - Москва, «Химия», 1990], определенной согласно [ГОСТ 12.1.044-89 (ИСО 4589-84)] именно для порошка, изготовленного по традиционной «конденсаторной» технологии, что и обосновывает корректность предложенного нами способа.

Для технологии «гидрирования-дегидрирования» соответствующая температура начала тепловыделения Тнач 2=322,6°C (см. фиг. 1 и табл. 2), что почти на 20°C выше, чем для традиционной «конденсаторной» технологии. Таким образом, можно сделать вывод о том, что порошок тантала, полученный по технологии «гидрирования-дегидрирования», менее пожаровзрывоопасен, чем порошок, полученный по традиционной технологии.

Теперь обратим внимание на величину интенсивности тепловыделения I=ΔQ/ΔT. Вследствие того, что ширина пика тепловыделения ΔТ2>ΔT1 (см. фиг. 1), a ΔQ в обоих случаях практически одинаково (4474,9 Дж/г и 4646,6 Дж/г, см. таблицы 1, 2), поэтому усредненная интенсивность тепловыделения ΔQ/ΔT для новой технологии ниже, чем для традиционной, а именно 99,7 Дж/(г⋅°C) против 114, 6 Дж/(г⋅°C), как это указано в таблицах 1, 2. Таким образом, и по данному важному параметру порошок тантала, полученный по технологии «гидрирования-дегидрирования», менее пожаровзрывоопасен, чем порошок, полученный по традиционной «конденсаторной» технологии.

Важно еще раз отметить, что для порошка Та по технологии "гидрирования-дегидрирования" литературных данных, полученных по методам [ГОСТ 12.1.044-89 (ИСО 4589-84)], пока еще нет, тем не менее, полученные результаты дают основание уверенно говорить о том, что пожаровзрывоопасность порошка при переходе на новую технологию понизится. Отметим также, что в ходе ТГ-ДТА (ДСК) опытов определяются одновременно удельное тепловыделение ΔQ и его интенсивность ΔQ/ΔT, которые согласно [ГОСТ 12.1.044-89 (ИСО 4589-84)] не определяются, однако определенные согласно заявляемому способу, они могут использоваться на практике, в том числе при математическом моделировании протекающих процессов.

Теперь рассмотрим результаты, полученные для порошка вольфрама. Из фиг. 4 видим, что прекращение роста массы пробы, сопровождающееся выходом ТГ-кривой на «насыщение», и образование высшего окисла соответствует приросту массы, равному 26%. Необходимо идентифицировать, что исследуемый порошок - именно вольфрам, а не какой-либо иной металл. Высший окисел вольфрама отвечает химической формуле WO3 и соответствует, как нетрудно рассчитать, именно 26%-му приросту массы. Результаты ДТА, отраженные на фиг. 3 и в таблице 3, подтверждают, что исследуемый порошок - вольфрам. Так, измеренный экзотермический эффект окисления равен 3565,0 Дж/г, что практически, с точностью до погрешности измерения, совпадает со справочным значением для вольфрама, равным 3628,6 Дж/г [Химическая энциклопедия, т. 1, стр. 421. - М.: Большая Российская Энциклопедия, 1988].

Температура начала тепловыделения, соответствующая началу окисления, по данным ДТА для порошка вольфрама равна Тнач=600,8°C, усредненная интенсивность тепловыделения ΔQ/ΔT равна ~33,1 Дж/(г⋅°C) (см. таблицу 3). Сравнивая полученные данные с аналогичными данными для тантала, делаем вывод, что порошок вольфрама существенно менее пожаровзрывоопасен, чем порошок тантала, т.к. температура начала тепловыделения (Тнач=600,8°C) для вольфрама существенно выше, а усредненная интенсивность тепловыделения (33,1 Дж/(г°C)), в свою очередь, существенно ниже, чем для тантала.

Таким образом, результаты, представленные на фиг. 1…4 и в таблицах 1…3, подтверждают достижение технического результата с применением заявленного способа. Отметим, что одновременно с определением пожаровзрывоопасности появилась возможность и идентафикации веществ, при этом полученная дополнительная информации позволяет повысить надежность и точность анализа пожаровзрывоопасности веществ.

Способ анализа вещества термоаналитическим методом, заключающийся в определении его пожаровзрывоопасности по величине экзотермического эффекта процесса окисления и начальной температуре тепловыделения, отличающийся тем, что одновременно по величине экзотермического эффекта процесса окисления проводят идентификацию вещества, а для определения пожаровзрывоопасности вещества дополнительно используют величину усредненной интенсивности тепловыделения, рассчитываемую по формуле I=ΔQ/ΔТ, где ΔQ - экзотермический эффект окисления (Дж/г), a ΔT - ширина температурного интервала экзотермического пика окисления на половине его высоты (°C).
СПОСОБ АНАЛИЗА ВЕЩЕСТВА ТЕРМОАНАЛИТИЧЕСКИМ МЕТОДОМ
СПОСОБ АНАЛИЗА ВЕЩЕСТВА ТЕРМОАНАЛИТИЧЕСКИМ МЕТОДОМ
СПОСОБ АНАЛИЗА ВЕЩЕСТВА ТЕРМОАНАЛИТИЧЕСКИМ МЕТОДОМ
СПОСОБ АНАЛИЗА ВЕЩЕСТВА ТЕРМОАНАЛИТИЧЕСКИМ МЕТОДОМ
СПОСОБ АНАЛИЗА ВЕЩЕСТВА ТЕРМОАНАЛИТИЧЕСКИМ МЕТОДОМ
Источник поступления информации: Роспатент

Показаны записи 641-650 из 797.
23.02.2020
№220.018.04cc

Мишень тормозного излучения электронного ускорителя

Изобретение относится к мишени тормозного излучения электронного ускорителя. Мишень содержит расположенные последовательно по ходу излучения, входной и выходной коллиматоры с проходными отверстиями на оси и размещенный между ними конвертер тормозного излучения, выполненный из материала с...
Тип: Изобретение
Номер охранного документа: 0002714883
Дата охранного документа: 20.02.2020
23.02.2020
№220.018.0571

Неоднородная формирующая длинная линия (варианты)

Группа изобретений относится к импульсной технике и может быть использована в схемах питания импульсных источников, работающих как в импульсном, так и в импульсно-периодическом режимах. Техническим результатом является уменьшение длительности импульса выходного напряжения неоднородной...
Тип: Изобретение
Номер охранного документа: 0002714739
Дата охранного документа: 19.02.2020
23.02.2020
№220.018.05ba

Способ поперечной накачки рабочей среды лазера

Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h,...
Тип: Изобретение
Номер охранного документа: 0002714781
Дата охранного документа: 19.02.2020
27.02.2020
№220.018.0699

Пломбировочное устройство

Использование: изобретение относится к пломбирующим устройствам, именно к навесным пломбам, предназначенным для контроля целостности опломбированного объекта, и может использоваться в любой области техники, где требуется контроль и определение фактов несанкционированного вмешательства. Сущность...
Тип: Изобретение
Номер охранного документа: 0002715043
Дата охранного документа: 21.02.2020
28.02.2020
№220.018.06d3

Способ сдерживания бокового разлета продуктов взрыва заряда взрывчатого вещества, метающего ударник, и устройство для его осуществления

Изобретение предназначено для применения при испытаниях военной техники, в которых используются взрывы зарядов взрывчатых веществ (ВВ). Способ основан на осуществлении инициирования на наиболее удаленных от ударника торцах метающего заряда ВВ и, по крайней мере, одного дополнительного заряда...
Тип: Изобретение
Номер охранного документа: 0002715322
Дата охранного документа: 26.02.2020
28.02.2020
№220.018.06ef

Система мониторинга разъемных соединений кабельного тракта

Изобретение относится к технике связи, в частности к оборудованию кабельных систем и может использоваться для идентификации состояния портов коммутационных панелей, через которые осуществляется соединение сетевых устройств. Техническим результатом является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002715361
Дата охранного документа: 26.02.2020
29.02.2020
№220.018.072d

Способ количественного определения галогенидов лития в литиевом электролите для тепловых химических источников тока

Изобретение относится к аналитической химии, а именно к методам определения концентрации компонентов электролитов для тепловых химических источников тока (ТХИТ), и может быть использовано для определения галогенидов щелочных металлов при их совместном присутствии в твердых литиевых...
Тип: Изобретение
Номер охранного документа: 0002715225
Дата охранного документа: 26.02.2020
29.02.2020
№220.018.073e

Способ изготовления взрывчатого наноструктурированного материала

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в...
Тип: Изобретение
Номер охранного документа: 0002715195
Дата охранного документа: 25.02.2020
29.02.2020
№220.018.077f

Контейнер со средствами защиты и контроля

Изобретение относится к области обеспечения контроля и безопасности хранения и транспортирования радиационно-, пожаро-, взрывоопасных изделий. Контейнер со средствами защиты и контроля состоит из наружного силового корпуса, противопулевого защитного экрана, теплозащитного слоя, демпфирующего...
Тип: Изобретение
Номер охранного документа: 0002715379
Дата охранного документа: 27.02.2020
29.02.2020
№220.018.0783

Приемопередатчик бортового ретранслятора

Изобретение относится к области радиотехники и может быть использовано для передачи и приема сигналов в системах спутниковой связи. Технический результат - обеспечение регулировки и автономного контроля работоспособности приемопередающей системы. Приемопередатчик включает приемник, передатчик,...
Тип: Изобретение
Номер охранного документа: 0002715376
Дата охранного документа: 27.02.2020
Показаны записи 281-286 из 286.
04.04.2018
№218.016.3160

Прижимной механизм

Изобретение относится к специальным контейнерам, в частности к механизмам удержания, обеспечивающим надежное и быстрое закрепление опасного груза в стесненных габаритных условиях. Техническим результатом является обеспечение быстрого и надёжного закрепления груза в стеснённых габаритных...
Тип: Изобретение
Номер охранного документа: 0002645022
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
14.02.2019
№219.016.ba3b

Способ извлечения наполнителя из утилизируемого полимерного композита

Изобретение относится к области ресурсосбережения и регенерации материалов при утилизации объектов техники, в частности, оно предназначено для извлечения порошка наполнителя из композиционного материала. Техническим результатом является сокращение производственного цикла и контроль извлечения...
Тип: Изобретение
Номер охранного документа: 0002679776
Дата охранного документа: 12.02.2019
11.03.2019
№219.016.db32

Способ снижения пожаровзрывоопасности газовой среды контейнеров с экологически опасными химически активными материалами

Изобретение относится к области обеспечения пожаровзрывобезопасности газовых сред, в частности к методам снижения пожаровзрывоопасности газовых сред, образующихся при деструкции органических конструкционных материалов в герметичных объемах в условиях пожара. Предлагаемый способ обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002415484
Дата охранного документа: 27.03.2011
+ добавить свой РИД