×
23.02.2020
220.018.05ba

Результат интеллектуальной деятельности: СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, формирующую оптику выполняют из двух компонентов. Первый из компонентов представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как где θ - полная расходимость излучения на выходе из оптических волокон. Второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения. Технический результат заключается в уменьшении габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера. 3 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике и может быть использовано для оптической поперечной накачки рабочей среды в лазерной кювете.

При поперечной накачке рабочей среды лазера вектора направленности излучения накачки и генерации находятся во взаимно ортогональных плоскостях, что позволяет увеличивать мощность генерации путем увеличения габаритных размеров накачиваемой рабочей среды за счет наращивания мощности накачки. Благодаря эффективному преобразованию электрической энергии в световую и узкой ширине спектра излучения для накачки рабочей среды лазера широко используются диодные источники накачки. Для достижения высоких энергетических характеристик лазера требуется решить задачу суммирования излучения от диодных источников, его передачу и формирование в рабочей среде лазера с сохранением компактности лазера.

Известен способ поперечной накачки рабочей среды лазера по патенту US 4713822 «Laser device» опублик. 15.12.1987 г., включающий передачу излучения от диодных источников накачки с помощью оптических волокон к формирующей оптике, создающей поле накачки лазера на пересечении пучка накачки и излучения генерации в рабочей среде лазера, при этом торцы волокон плотно упакованы на концевом участке в ряд и расположены в одной плоскости с образованием излучающей площадки. Излучающую площадку располагают в фокальной плоскости формирующей оптики, состоящей из одной цилиндрической линзы.

Недостатками указанного способа является использование цилиндрической линзы, приводящее к формированию поля накачки лишь по одной оси, что приводит к уменьшению интенсивности пучка накачки в активной среде лазера и не позволяет сохранить размер формируемой области накачки постоянным вдоль оси распространения излучения генерации, образуя в активной среде лазера зоны с отсутствием излучения накачки, что приводит к снижению выходных энергетических характеристик лазера. Кроме того, увеличение мощности накачки путем добавления новых рядов волокон нарушает коллимацию пучка накачки в активной среде, что приводит к уменьшению длины области накачки и не позволяет достичь высоких выходных энергетических характеристик лазера. Использование только одного типа формы излучающей площадки уменьшает экспериментальные возможности применения данного способа, а необходимость расположения активной среды вблизи формирующей оптики усложняет доступ к элементам лазера и сокращает варианты модернизации центральной части лазера.

Совокупность признаков, наиболее близкая к совокупности существенных признаков заявляемого изобретения, присуща известному способу поперечной накачки рабочей среды лазера по патенту RU №2657125 «Способ поперечной накачки рабочей среды лазера» опублик. 08.06.2018 г., включающему передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которую располагают в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью.

Недостатками указанного способа, принятого за прототип, является рост габаритов формирующей оптики при увеличении мощности накачки за счет увеличения размеров излучающей площадки, поскольку излучающую площадку располагают на расстоянии от передней главной плоскости формирующей оптики, где D - размер области накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации. Так, при квадратной излучающей площадке со стороной h и размере рабочей среды D=h, минимальный диаметр формирующей оптики составит около 4h. Крупногабаритная оптика сложна в изготовлении, имеет высокую стоимость, а также приводит к увеличению габаритов самого лазера. Кроме того, соответствующее увеличение толщины формирующей оптики приводит к уменьшению ее заднего рабочего отрезка, что усложняет внедрение конструкторских решений, направленных на модернизацию центральной части лазерной кюветы, а также уменьшает экспериментальные возможности применения данного способа.

Задачей, на решение которой направлено заявляемое изобретение, является формирование поля накачки в рабочей среде лазера с сохранением постоянного размера вдоль оси генерации на всем протяжении рабочей среды по оси накачки и с созданием высокой интенсивности излучения, при удержании габаритов формирующей оптики, близкими к размерам излучающей площадки.

Техническим результатом настоящего изобретения является значительное уменьшение габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера, что увеличивает экспериментальные возможности применения данного способа.

Технический результат достигается тем, что в способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h -размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, новым является то, что формирующую оптику выполняют из двух компонентов, первый из которых представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как , где θ - полная расходимость излучения на выходе из оптических волокон, а второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения.

Расположение первой линзы формирующей оптики вблизи от излучающей площадки позволяет удержать ее размер, сопоставимым с размером излучающей площадки, а расчет ее фокусного расстояния направлен на коллимацию крайних лучей от большей стороны излучающей площадки, что приводит к сохранению размера пучка излучения накачки на расстоянии, равном фокусному расстоянию этой линзы.

Установка второго компонента формирующей оптики, состоящего из одной или нескольких линз, в фокусе первой, также сохраняет его габариты, сопоставимыми с размером излучающей площадки, а использование двух линз во втором компоненте формирующей оптики уменьшает сферическую аберрацию и увеличивает задний фокальный отрезок данной линзовой системы. Уменьшение сферической аберрации формирующей оптики увеличивает интенсивность в формируемом поле накачки и делает его границы более резкими, что позволяет наиболее точно согласовать размеры рабочей среды с размерами поля накачки. Небольшие габариты формирующей оптики и увеличение заднего фокального отрезка данной линзовой системы увеличивает экспериментальные возможности применения данного способа.

На фиг. 1, схематически изображена реализация заявленного способа, где 1 - диодные источники накачки, 2 - оптические волокна, 3 - излучающая площадка, 4 - мнимое изображение излучающей площадки, 5, 6 - первый и второй компоненты формирующей оптики, соответственно, 7 - рабочая среда лазера. Показан ход лучей из торцов крайних волокон, поясняющий формирование поля накачки с поперечным размером D, совпадающим с размером рабочей среды лазера по оси генераций.

В заявленном способе поперечной накачки активной среды лазера излучение от диодных источников накачки 1 с помощью оптических волокон 2 передается к предварительно рассчитанной и выбранной формирующей оптике. Волокна плотно упакованы на концевом участке с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку 3 размером h×d и расходимостью излучения на выходе θ. Формирующая оптика состоит из двух компонентов 5 и 6 и создает требуемое поле накачки в рабочей среде 7 лазера. Реализация заявленного способа позволяет удержать габариты формирующей оптики близкими к размеру излучающей площадки, что имеет существенное значение при увеличении мощности накачки.

На макете лабораторного газового лазера была экспериментально показана осуществимость заявленного способа. В данных экспериментах излучение от диодных источников накачки передавалось посредством кварцевых оптических волокон с диаметром светопроводящей сердцевины 400 мкм и расходимостью на выходе из волокна θ=0,4 рад. Посредством компоновки торцов волокон собрана излучающая площадка размером h=130 мм по оси распространения излучения генерации. Данный способ реализовывал поперечную накачку газовой рабочей среды размером вдоль оси генерации D=132 мм. Формирующая оптика состояла из двух компонентов. Первый компонент представлял собой кварцевую плосковыпуклую линзу, которая была установлена на расстоянии L=120 мм от излучающей площадки. Фокусное расстояние линзы рассчитано по формуле мм. Второй компонент формирующей оптики устанавливалась на расстоянии 445 мм от первой линзы и состояла из двух кварцевых плоско-выпуклых линз, состыкованных выпуклыми поверхностями друг с другом, эффективное фокусное расстояние которых было рассчитано по формуле мм. При этом на расстоянии мм от задней фокальной плоскости второго компонента формирующей оптики построилось действительное изображение излучающей площадки, размером по оси генерации D=132 мм. Рабочая среда лазера была расположена между формирующей оптикой и плоскостью действительного изображения, причем дальняя граница рабочей среды была совмещена с этой плоскостью.

Формирующая оптика создавала интенсивность излучения накачки в рабочей среде лазера равную интенсивности излучения на выходе из излучающей площадки и состояла из трех линз диаметром 200 мм, что лишь в 1,5 раза больше размера излучающей площадки. В аналоге, взятого за прототип, диаметр линз составил бы около 400 мм. При возможности более близкого расположения первой линзы формирующей оптики к излучающей площадке диаметр линз можно уменьшить до 150 мм. Таким образом, заявленный технический результат был достигнут.

Кроме того, пространство между последней линзой и рабочей средой лазера позволило установить конструкцию уплотнения окон лазерной кюветы предотвращающую разгерметизацию при давлении внутри лазерной кюветы от 10-6 атм до 10 атм, а также установить конструкцию защиты окон кюветы от их загрязнения продуктами рабочей среды лазера.

С использованием заявленного способа поперечной накачки лазера получена генерация газового лазера с КПД около 30%, что подтверждает осуществимость заявленного способа.


СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 796.
27.04.2013
№216.012.3b44

Способ определения сплошности покрытия изделия

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002480733
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.41ed

Интерферометр

Изобретение может быть использовано для контроля качества афокальных систем, в том числе крупногабаритных, а именно: плоских зеркал, светоделителей, плоскопараллельных пластин, клиньев, телескопических систем с увеличением, близким к единичному. Интерферометр содержит формирователь...
Тип: Изобретение
Номер охранного документа: 0002482447
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49ed

Переход волоконно-оптический

Изобретение относится к волоконно-оптической технике и может быть использовано для герметичного ввода оптического волокна через перегородку. Устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей с проходным...
Тип: Изобретение
Номер охранного документа: 0002484505
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5ab8

Система параметрической гидролокации с функцией получения акустического изображения целей

Использование: изобретение относится к области гидролокации и предназначено для обнаружения подводных целей и получения их акустического изображения. Сущность: в предложенной системе параметрической гидролокации излучение низкочастотных зондирующих сигналов формируют путем нелинейного...
Тип: Изобретение
Номер охранного документа: 0002488845
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.686e

Затвор люка камеры

Изобретение относится к машиностроению и может быть использовано при проектировании крупногабаритных камер высокого давления для испытания в них изделий. Затвор люка камеры содержит герметично установленную на люке камеры крышку, имеющую глубокую заходную часть и связанную с размещенным извне...
Тип: Изобретение
Номер охранного документа: 0002492381
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.688d

Складываемая аэродинамическая поверхность

Изобретение относится к области ракетной техники и, в частности к конструкциям складываемых аэродинамических поверхностей, находящихся под воздействием сильных аэродинамических возмущений. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную...
Тип: Изобретение
Номер охранного документа: 0002492412
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.740f

Контактный датчик

Изобретение относится к военной технике, в частности к средствам инициирования. Контактный датчик содержит два кольца, опорное и рабочее, установленных соосно и скрепленных между собой. На основании опорного кольца размещен кольцевой чувствительный элемент, а рабочее кольцо оснащено...
Тип: Изобретение
Номер охранного документа: 0002495368
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.74a5

Двухдиапазонная микрополосковая антенна круговой поляризации

Изобретение относится к антенно-фидерным устройствам, а именно к бортовым антеннам спутниковой навигации. Техническим результатом является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одиовходовым приемником. Двухдиапазонная...
Тип: Изобретение
Номер охранного документа: 0002495518
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.8345

Сцинтилляционный материал на основе zno-керамики, способ его получения и сцинтиллятор

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002499281
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.884d

Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата

Изобретение относится к средствам фиксации складывающихся аэродинамических поверхностей летательного аппарата. Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата содержит узел, обеспечивающий прилегание аэродинамических поверхностей к корпусу летательному...
Тип: Изобретение
Номер охранного документа: 0002500575
Дата охранного документа: 10.12.2013
Показаны записи 1-10 из 23.
20.03.2013
№216.012.3018

Способ тестирования световодов с недоступным торцом ввода-вывода излучения

Изобретение относится к измерительной технике и может быть использовано для контроля качества световодов с непрозрачной защитной оболочкой и одним недоступным торцом ввода-вывода излучения. Способ тестирования световодов с недоступным торцом ввода-вывода излучения заключается в введении...
Тип: Изобретение
Номер охранного документа: 0002477847
Дата охранного документа: 20.03.2013
20.12.2013
№216.012.8e74

Способ изготовления фотокатода и устройство для изготовления фотокатода

Изобретение относится к области электронной техники, а именно к способам изготовления фотокатодов и устройствам для изготовления фотокатодов для использования их в различных областях промышленности, техники, а также для научных исследований. Технический результат - упрощение способа...
Тип: Изобретение
Номер охранного документа: 0002502151
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.905a

Лазерное устройство контроля околоземного космического пространства

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего...
Тип: Изобретение
Номер охранного документа: 0002502647
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.917d

Система инициирования

Изобретение относится к подрывной технике, а именно к инициирующим устройствам. Система инициирования содержит детонатор, детонационный распределитель с приемными точками и каналами разводки, заряд взрывчатого вещества, элементы крепления. Между распределителем и элементами крепления имеется...
Тип: Изобретение
Номер охранного документа: 0002502938
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9224

Лазер на парах щелочных металлов с диодной накачкой

Изобретение относится к лазерной технике. Лазер на парах щелочных металлов с диодной накачкой содержит лазерную камеру с внутренней полостью с прозрачными торцевыми окнами, замкнутый герметичный контур для циркуляции активной среды, проходящий через внутреннюю полость камеры в направлении,...
Тип: Изобретение
Номер охранного документа: 0002503105
Дата охранного документа: 27.12.2013
10.04.2014
№216.012.b2e5

Способ и система защиты воздушных судов от ракет переносных зенитных ракетных комплексов

Для защиты воздушного судна от управляемых ракет с инфракрасными головками самонаведения определяют факт пуска одной или нескольких ракет, генерируют лазерное излучение с плотностью, превышающей плотность мощности теплового излучения двигателя воздушного судна, и посылают в точку нахождения...
Тип: Изобретение
Номер охранного документа: 0002511513
Дата охранного документа: 10.04.2014
10.09.2014
№216.012.f3f1

Способ определения остаточной сферичности отражающей поверхности

Способ определения остаточной сферичности отражающей поверхности относится к измерительной технике и может быть использован для определения остаточной сферичности плоских зеркал и радиусов кривизны крупногабаритных сферических зеркал. Способ заключается в том, что измерительный прибор...
Тип: Изобретение
Номер охранного документа: 0002528272
Дата охранного документа: 10.09.2014
10.10.2014
№216.012.fc5d

Способ определения возмущений и биений вертикальной оси опорно-поворотного устройства

Способ включает использование двух автоколлимационных теодолитов и многогранной зеркальной призмы, которую устанавливают в горизонтальной плоскости, совмещая ее центр с вертикальной осью вращения. Теодолиты наводят на грани многогранной призмы так, чтобы их визирные оси были на одном уровне...
Тип: Изобретение
Номер охранного документа: 0002530451
Дата охранного документа: 10.10.2014
27.03.2015
№216.013.3512

Способ автоматизированной юстировки оптической системы

Изобретение может быть использовано для автоматизированной юстировки элементов усилительного канала лазерных установок. Способ включает получение изображений юстировочного лазерного пучка и маркеров контрольных элементов оптической системы, центр которых определяется по паре маркеров,...
Тип: Изобретение
Номер охранного документа: 0002545070
Дата охранного документа: 27.03.2015
10.08.2015
№216.013.69db

Активный элемент лазера на парах щелочных металлов

Активный элемент лазера на парах щелочных металлов содержит камеру с активной средой и оптические окна, прозрачные для лазерного излучения. В стенках камеры установлены трубчатые концевые секции, отделяющие оптические окна от стенок. Каждая концевая секция выполнена металлической с ребристой...
Тип: Изобретение
Номер охранного документа: 0002558652
Дата охранного документа: 10.08.2015
+ добавить свой РИД