×
25.08.2017
217.015.c14a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля. Сущность изобретения заключается в обработке нагретого алюминия газообразными реагентами в виде галогенида алюминия, например трифторида алюминия, и азотсодержащего газа и последующую конденсацию конечного продукта, причем порошок трифторида алюминия размещают в одной реакционной камере с гранулами металлического алюминия и испаряют одновременно при температуре 1050-1150°C, а конденсацию осуществляют на поверхности жидкого алюминия. Изобретение позволяет получать нитевидный нитрид алюминия со средним диаметром менее 100 нм по всей протяженности волокна и с соотношением длины волокна к диаметру более 100. 4 ил., 2 пр.

Изобретение относится к химической технологии получения соединений алюминия, а именно к технологии получения нитевидного нитрида алюминия в виде нановискеров, и может быть использовано при разработке эффективных электролюминофоров для новых источников света в видимом и ультрафиолетовом диапазонах, а также при создании элементов нано-оптоэлектроники и люминесцентно-активных наноразмерных сенсоров медико-биологического профиля.

Нитрид алюминия благодаря широкой запрещенной зоне 6.2 эВ и уникальным физико-химическим свойствам является перспективным материалом для целей оптоэлектроники. Наиболее перспективными структурами на основе AlN с уникальными транспортными, электрическими, люминесцентными и адсорбционными свойствами являются нитевидные нанокристаллы - новый класс материалов для элементов и сенсоров современной микроэлектроники и нано-оптоэлектроники многоцелевого назначения (В.Г. Дубровский, Г.Э. Цырлин, В.М. Устинов. Полупроводниковые нитевидные нанокристаллы: синтез, свойства, применение // Физика и техника полупроводников, 2009, том 43, вып. 12, с. 1585-1628; Е.И. Гиваргизов. Рост нитевидных и пластинчатых кристаллов из пара. М. Наука, 1977, - 304 с.).

Известны способы получения нитрида алюминия высокотемпературным (1300-1700°C) карботермическим восстановлением чистого оксида алюминия в атмосфере азота (заявка Великобритании №2233969, МПК C01B 21/072, опубл. 23.01.91 (средний размер частиц менее 1 мкм); заявка Японии №3-48123, МПК C01B 21/072, опубл. 23.07.91) и кристаллов нитрида алюминия совместно с монокристаллами фторидов металлов (Патент США №4172754, МПК C01B 21/06, опубл. 10.08.71). Недостатком подобных способов является то, что они позволяют получать только мелкодисперсные порошки или керамические образцы AlN. Нитевидные кристаллы AlN (нановискеры нитрида алюминия) такими известными способами с использованием вышеуказанных патентных документов получить нельзя.

Патентом защищен способ получения волокон нитрида алюминия путем спекания смеси алюминий содержащего соединения, полимерного органического вещества, углеродсодержащего и/или азотсодержащего соединения (Заявка Франции №2647436, МПК C04B 35/581, опубл. 30.11.90). Процесс синтеза ведут в неокислительной инертной атмосфере, содержащей азот. Однако при использовании этого известного способа волокна имеют малое отношение длины волокна к диаметру (не более 10-50). Синтезируемые образцы A1N имеют диаметр от 100 мкм до 1 мм. Получить нитевидные волокна наноразмерного диаметра и с отношением длины волокна к диаметру более 100 известный способ не позволяет.

Разработан способ получения игольчатого нитрида алюминия, включающий продувку алюминиевой пудры, нагретой до 950-1000°C, смесью аргона и аммиака при дозированной подаче последней, что обеспечивает образование и рост игольчатых кристаллов нитрида алюминия на поверхности алюминиевых частиц (Заявка США №4322395, МПК C01B 21/072. опубл. 30.03.82). Однако известная технология требует контроля полноты протекания реакции, что удорожает технологию. Недостатком данного способа является также то, что игольчатые кристаллы AlN, получаемые подобным способом, загрязнены металлическим алюминием и теряют свои уникальные свойства. Главным недостатком известного способа является то, что получить нитевидные волокна с отношением длины волокна к диаметру, равным 100 и более, известный метод не позволяет. Характерный размер отдельных иголок может быть около 2 мм длиной и 0.2 мм в диаметре, таким образом аспектное соотношение составляет 10:1.

Нитевидные кристаллы - вискеры нитрида алюминия могут быть получены высокотемпературным (1800-2000°C) карботермическим восстановлением чистого оксида алюминия в атмосфере азота в присутствии катализатора роста (Заявка Франции №0749940, МПК C01B 21/072, опубл. 27.12.96). Однако данный способ является сложным в технологическом отношении и получаемые по этому способу вискеры AlN имеют диаметр в диапазоне 1-50 мкм.

Существует способ получения вискеров нитрида алюминия, включающий одновременное проведение реакции карботермического азотирования в присутствии реакции прямого азотирования и газотранспортной реакции (Заявка США №5693305, МПК C01B 21/72, опубл. 02.12.97). Однако получаемые волокна имеют диаметр 0.3-3 мкм и малое отношение длины волокна к диаметру (не более 7-20).

Разработан способ получения нанопроволоки нитрида алюминия высокотемпературным (1500-2200°C) карботермическим восстановлением чистого оксида алюминия в атмосфере азота и аммиака (Заявка Китая №101323439, МПК C01B 21/072, опубл. 17.12.08). Недостатками такого процесса синтеза являются его сложность и необходимость использовать очень высокие температуры. Контролируемый диаметр нанопроволок находится в диапазоне 50-200 нм.

Известен способ получения нанопроволоки нитрида алюминия (Заявка Китая №103539087, МПК C01B 21/072, опубл. 29.01.14). Однако в процессе синтеза применяются кремниевые пластины с напылением золота, используемого в качестве инициатора роста, что приводит к удорожанию технологии.

Нитевидный нитрид алюминия может быть получен путем обработки нагретого алюминия газообразными галогенидами алюминия, подаваемыми со скоростью 0,1-6 см3/мин на каждый 1 см2 поверхности конденсации, и азотсодержащими газами, причем соотношение между галогенидом алюминия и азотом поддерживают на уровне 1:(1,2-12), а конденсацию ведут на подложке из компактного поликристаллического нитрида алюминия (патент РФ №2106298, МПК C01B 21/072, опубл. 10.03.98).

Способ обеспечивает получение нитрида алюминия в виде волокон с соотношением длины к диаметру более 100, но характерные размеры авторами не указаны. Однако данный способ является сложным в технологическом отношении.

Наиболее близким к заявляемому является способ получения нитрида алюминия в виде нитевидных кристаллических волокон с отношением длины волокна к диаметру более 200-300 путем пропускания через нагретый алюминий газообразных реагентов в виде азота и галогенидов алюминия с регулируемой скоростью 0,1-6 см3/мин на каждый 1 см2 поверхности конденсации и последующей конденсацией на подложке из чистого графита (патент РФ №2312061, МПК C01B 21/072, опубл. 10.12.07, бюл. №34). Недостатком получаемых волокон являются большой диаметр: средняя величина по всей длине волокна составляет 5-6 мкм, оконечный участок волокна имеет согласно описанию толщину (диаметр) 2,9 мкм и только самый кончик/острие волокна имеет диаметр 60 нм.

Задачей настоящего изобретения является разработка технологии получения нитрида алюминия в виде нитевидных кристаллов со средним диаметром менее 100 нм по всей протяженности волокна и соотношением длины к диаметру более 100.

Поставленная задача решается за счет того, что в способе, включающем взаимодействие нагретого алюминия с азотом и галогенидами алюминия (III), скорость подачи которых находится на уровне 0.1-6.0 см3/мин на каждый 1 см2 поверхности конденсации, весь процесс синтеза ведут в реакционной камере, куда газообразный галогенид алюминия, необходимый для обеспечения процесса синтеза нитевидных волокон нитрида алюминия, поступает в результате испарения порошка тригалогенида алюминия из находящегося внутри реакционной камеры внешнего тигля, а конденсацию ведут на поверхности жидкого алюминия, находящегося в малом внутреннем тигле, который в свою очередь находится внутри внешнего тигля в той же реакционной камере. Реакционная камера во время процесса синтеза заполняется азотсодержащим газом, подаваемым в необходимом количестве в область над жидким алюминием.

На фиг. 1 схематически представлена установка для реализации заявляемого способа синтеза, сущность которого заключается в следующем. Внутри реакционной камеры 1 испаряли порошок трифторида алюминия, находящийся во внешнем тигле 2. Пары трифторида алюминия поступали во внутренний тигель 3, наполненный жидким алюминием, при температуре 1050-1150°C нагревателя печи 4, достаточной для образования субгалогенида алюминия. Во внутреннее пространство реакционной камеры 1 в область над жидким алюминием подавали азотсодержащий газ, например N2 и NH3, из баллона 5 в соотношении 1:1.2 и выше относительно трифторида алюминия необходимого по стехиометрии химической реакции.

В этом случае на поверхности жидкого алюминия идут следующие реакции:

2Al(жид)+AlF3(газ)=3AlF(газ)

3AlF(газ)+N2(газ)=2AlN(тв.)+AlF3(газ)

Нитрид алюминия образуется в виде нитевидных нанокристаллов на активных центрах роста AlN, возникающих на поверхности жидкого алюминия. На этих активных центрах по ходу процесса синтеза формируется слой AlN из нитевидных волокон со средним диаметром менее 100 нм по всей длине волокна при соотношении длины волокна к диаметру более 100 (фиг. 2).

Способ иллюстрируется следующими примерами выполнения.

Пример 1. Способ получения нитевидного нитрида алюминия.

Способ получения нитевидного нитрида алюминия включает следующие процедуры. Исходный порошок трифторида алюминия испаряют из внешнего тигля, расположенного в реакционной камере, при температуре 1050°С, пары трифторида алюминия поступают во внутренний тигель с жидким алюминием при такой же температуре. В пространство над тиглями подают азот со скоростью примерно в 5 раз больше, чем необходимо по стехиометрии реакции. Продолжительность процесса синтеза составляла 2 часа. За это время в приповерхностных слоях жидкого алюминия сформировались массивы из нитевидных волокон - нановискеров AlN. Толщина массивов из нитевидных волокон около 1 мм. Анализ снимков, полученных с помощью электронного микроскопа Sigma VP Carl Zeiss, показал, что A1N представляет собой нитевидные нанокристаллы со средним диаметром менее 100 нм по всей длине волокна и соотношением длины к диаметру более 100 (фиг. 3). С помощью рентгенофазового анализа на дифрактометре X'PertPro MPD PANalytical установлено, что продуктом синтеза является гексагональный нитрид алюминия.

Пример 2. Способ получения нитевидного нитрида алюминия.

Способ получения нитевидного нитрида алюминия включает следующие процедуры. Исходный порошок трифторида алюминия испаряют из внешнего тигля, расположенного в реакционной камере, при температуре 1150°С, пары трифторида алюминия поступают во внутренний тигель с жидким алюминием при такой же температуре. В пространство над тиглями подают аммиак со скоростью примерно в 5 раз больше, чем необходимо по стехиометрии реакции. Продолжительность процесса синтеза составляла 2 часа. За это время в приповерхностных слоях жидкого алюминия сформировался массив из нановискеров AlN с толщиной слоя около 1 мм. Снимки этих нитевидных нанокристаллов, полученные на электронном микроскопе Sigma VP Carl Zeiss, приведены на фиг. 4. Как видно из фиг. 4, AlN представляет собой нитевидные нанокристаллы со средним диаметром менее 100 нм по всей длине волокна и соотношением длины к диаметру более 100. Рентгенофазовый анализ конечного продукта на дифрактометре X'PertPro MPD PANalytical показал, что синтезированные нановискеры AlN получены в виде массивов из волокон гексагонального нитрида алюминия. Установлено, что средний диаметр получаемых по предлагаемому способу нитевидных волокон по всей их длине составляет 77±16 нм.

Техническим результатом является расширение арсенала известных технологий получения нитрида алюминия путем создания дополнительного способа получения нитевидного нитрида алюминия со средним диаметром менее 100 нм по всей протяженности волокна и с соотношением длины волокна к диаметру более 100.

Способ получения нитевидного нитрида алюминия, включающий обработку нагретого алюминия газообразными реагентами в виде галогенида алюминия и азотсодержащего газа и последующую конденсацию конечного продукта, отличающийся тем, что галогенид алюминия размещают в одной реакционной камере с алюминием и испаряют одновременно при температуре 1050-1150°С, а конденсацию ведут на поверхности жидкого алюминия.
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 201-210 из 216.
23.05.2023
№223.018.6e46

Способ переработки сбросного скандийсодержащего раствора уранового производства

Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов. Способ включает операцию экстракции скандия на твердом экстрагенте ТВЭКС, реэкстракцию скандия, возвращение реэкстрагированного ТВЭКС на...
Тип: Изобретение
Номер охранного документа: 0002795930
Дата охранного документа: 15.05.2023
23.05.2023
№223.018.6e62

Способ комплексной переработки сидеритовых руд

Изобретение относится к черной металлургии, а именно к переработке высокомагнезиальных сидеритовых руд. Способ включает дробление и грохочение исходной руды, магнетизирующий обжиг, сухую магнитную сепарацию, доизмельчение извлеченной магнитной фракции, выщелачивание из нее магния, выделение...
Тип: Изобретение
Номер охранного документа: 0002795929
Дата охранного документа: 15.05.2023
23.05.2023
№223.018.6e71

Отрезной резец для токарной обработки

Изобретение относится к области машиностроения и предназначено для применения на металлорежущих станках. Токарный резец состоит из поворотной оправки, на торце которой закреплена режущая пластинка. Отрезной резец для токарной обработки состоит из головки в виде пластины с режущим элементом и...
Тип: Изобретение
Номер охранного документа: 0002795895
Дата охранного документа: 12.05.2023
27.05.2023
№223.018.71dd

Устройство для преобразования энергии волны

Изобретение относится к возобновляемым источникам гидроэнергетики, а именно к устройству для преобразования энергии волны. Устройство содержит плавающую платформу 1, волноприемные ковшеобразные щиты 4, размещенные на осях 3, цепь 9, соединенную с зубчатыми колесами 8 и электрогенератором. Оси 3...
Тип: Изобретение
Номер охранного документа: 0002796116
Дата охранного документа: 17.05.2023
29.05.2023
№223.018.723f

Приливная электростанция с дополнительным резервуаром

Изобретение относится к гидротехническим сооружениям, а именно к приливным электростанциям. Электростанция содержит плотину 1, образующую отделенное от акватории 2 моря водохранилище 3, здание электростанции, размещенные в плотине 1 рабочие затворы, обратимые турбины с электрогенераторами. На...
Тип: Изобретение
Номер охранного документа: 0002796337
Дата охранного документа: 22.05.2023
29.05.2023
№223.018.7277

Способ определения стронция-90 в природных и сточных водах (варианты)

Группа изобретений относится к определению стронция-90 в природных (поверхностных пресных, подземных) и сточных водах с целью радиоэкологического мониторинга природных вод, а также радиационного контроля вод контрольно-наблюдательных скважин на территории промплощадки и санитарно-защитных зон...
Тип: Изобретение
Номер охранного документа: 0002796325
Дата охранного документа: 22.05.2023
29.05.2023
№223.018.727f

Способ переработки полиметаллического сульфидного сырья цветных металлов

Изобретение относится к гидрометаллургии, а именно к переработке полиметаллического сульфидного сырья, содержащего цветные и благородные металлы. Полиметаллическое сульфидное сырьё цветных металлов выщелачивают в растворе азотной кислоты и улавливают нитрозные газы. Выщелачивание проводят в...
Тип: Изобретение
Номер охранного документа: 0002796344
Дата охранного документа: 22.05.2023
30.05.2023
№223.018.73f4

Механизм стабилизации движения прицепной асимметричной машины на машинно-тракторном агрегате

Изобретение относится к сельскому хозяйству. Механизм стабилизации движения прицепной асимметричной машины на машинно-тракторном агрегате содержит тяговый рычаг (1), связанный передней частью с тягачом (3) через шарнирное крепление, а задней частью неподвижно соединенный с рамой прицепной...
Тип: Изобретение
Номер охранного документа: 0002796272
Дата охранного документа: 22.05.2023
06.06.2023
№223.018.785a

3-циано-4-гидрокси-1,4-дигидро-[1,2,4]триазоло[5,1-с][1,2,4]триазин, соединение, обладающее антигликирующей и антигликоксидационной активностями

Изобретение относится к области органической химии, а именно к 3-циано-4-гидрокси-[1,2,4]триазоло[5,1-с][1,2,4]триазину формулы 1, который обладающей антигликирующей и антигликоксидационной активностями. Технический результат: обеспечение антигликирующей и антигликоксидационной активностей...
Тип: Изобретение
Номер охранного документа: 0002775567
Дата охранного документа: 04.07.2022
16.06.2023
№223.018.7a18

Способ обработки заготовки на металлорежущем станке

Изобретение относится к области металлообработки и может быть использовано при настройке токарных, фрезерных и им подобных металлорежущих станков. Способ обработки включает придание исполнительному органу механизма подачи станка поступательного движения с заданной скоростью и шпинделю станка...
Тип: Изобретение
Номер охранного документа: 0002736129
Дата охранного документа: 11.11.2020
Показаны записи 81-82 из 82.
12.04.2023
№223.018.4450

Способ получения субмикронных кристаллов нитрида алюминия

Изобретение относится к химической технологии субмикронных кристаллов нитрида алюминия в форме гексагональных призм и комбинации гексагональной призмы с дипирамидой и пинакоидом, которое может быть использовано при создании элементов нано-, микро- и оптоэлектроники, а также...
Тип: Изобретение
Номер охранного документа: 0002738328
Дата охранного документа: 11.12.2020
12.04.2023
№223.018.4478

Способ получения фотокатализатора на основе нанотубулярного диоксида титана

Изобретение относится к технологии получения нанотубулярного диоксида титана (TiO-НТ) с повышенной фотокаталитической активностью анодированием. Способ получения фотокатализатора на основе нанотубулярного диоксида титана включает процесс анодирования титана во фторсодержащем растворе...
Тип: Изобретение
Номер охранного документа: 0002732130
Дата охранного документа: 11.09.2020
+ добавить свой РИД