×
25.08.2017
217.015.bf45

Результат интеллектуальной деятельности: Способ выращивания легированных нитевидных нанокристаллов кремния

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения полупроводниковых наноматериалов путем выращивания легированных нитевидных нанокристаллов кремния на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК). Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl и легирующее соединение РСl, поступающие из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, при этом выращивание кристаллов ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl]/[SiCl], равное m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m, большего или равного 0,01, количественное значение молярного отношения [PCl]/[SiCl] во втором источнике, используемом на основной стадии роста, устанавливают как m, равное 0. Изобретение обеспечивает возможность получения легированных нитевидных нанокристаллов Si, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n-n-n) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками. 5 пр.

Изобретение относится к области получения полупроводниковых материалов, предназначено для выращивания на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК) легированных нитевидных нанокристаллов (ННК) кремния, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n--n-n-) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками.

В настоящее время известен способ выращивания ННК Si, легированных в процессе ПЖК-роста атомами металла-катализатора, находящегося в виде жидкофазной капли на вершине кристалла [Wagner R S, Ellis WC Vapour-Liquid-Solid Mechanism of Single Crystal Growth // Appl. Phys. Lett., 1964. V. 4. N. 5. P. 89-90]. Поскольку катализаторами роста ННК Si являются металлы (Au, Cu, Ni, Pt, Pd и др.), создающие глубокие донорные уровни в энергетическом спектре запрещенной зоны Si, то выращенные данным способом кристаллы обладают низкой электрической проводимостью n-типа, а изготавливаемые к ним выводные электрические контакты металл-кремний обладают высоким переходным сопротивлением и нелинейными вольт-амперными характеристиками, что не позволяет использовать такие ННК для практических применений. Другим недостатком способа является невозможность создания областей ННК с разным уровнем легирования, так как примеси с глубокими энергетическими уровнями обладают высокими коэффициентами диффузии в Si и созданные области легирования легко размываются в течение небольшого времени.

Известен способ выращивания легированных ННК Si с использованием газообразного примесного соединения РН3 (гидрида фосфора) [Wang Y., Lew K. - K., Но Т. - Т. et al. Use of Phosphine as an n-Type Dopant Sourse for Vapor-Liquid-Solid Growth of Silicon Nanowires // Nano Lett, 2005. V. 5. No. 11. PP. 2139-2143], в основе которого лежит процесс введения в ННК легирующей мелкой донорной примеси из газовой фазы во время ПЖК-роста за счет применения отдельного потока с газообразным примесным соединением, который перед зоной роста кристалла смешивается с основным потоком реагирующих газов (SiH4 и H2) и создает постоянное отношение компонентов PH3/SiH4 в газовой фазе. Недостатками данного способа являются необходимость снижения концентрации легирующего компонента в парогазовой смеси до очень малых количеств и применения в этой связи систем дополнительного двух-трехступенчатого разбавления РН3 водородом, необходимость точного измерения сверхмалых количеств газообразных веществ, невозможность обеспечить различные уровни легирования ННК на различных стадиях роста, а также высокая токсичность РН3, разложение его при хранении и повышенные требования к герметичности газовых магистралей и реакционной камеры, что затрудняет управление процессом легирования кристаллов.

Наиболее близким техническим решением является способ получения легированных ННК Si химическим осаждением из паров SiCl4 во время ПЖК-роста с применением жидкостного источника легирующей примеси [Гиваргизов Е.И. Рост нитевидных и пластинчатых кристаллов из пара. М.: Наука, 1977, 304 с.]. В основе способа лежит легирование кристаллов фосфором путем введения в определенной пропорции в чистый жидкий SiCl4 галогенида фосфора РСl3, который в рабочем состоянии также является жидкостью. Недостатком данного способа является невозможность обеспечить различный уровень легирования ННК на разных стадиях роста (начальной (стадии образования пьедестала), основной (стадии цилиндрического роста) и конечной (стадии образования зоны рекристаллизации)), поскольку в нем фиксируется заданное отношение концентрации примеси и основы как в жидкой, так и в газовой фазах независимо от расхода газа-носителя через испаритель, что не дает возможности формирования высокоомных и электрически вырожденных областей ННК на основном, начальном и конечном участках кристалла.

Изобретение направлено на управляемое получение легированных ННК кремния, имеющих повышенный уровень легирования донорной примесью на начальном и конечном участках кристалла (структуры n--n-n-).

Это достигается тем, что при осаждении кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и легирующее соединение РСl3, поступающие из жидкостного источника, выращивание кристаллов на начальной, основной и конечной стадиях роста ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl3]/[SiCl4]=m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m≥0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m=0. В результате центральная часть ННК легируется до n-типа проводимости, а периферийные участки ННК (начальный и конечный) приобретают состояние вырождения и n--тип проводимости. Получается структура с тремя областями проводимости n--n-n-, причем n-область ННК может использоваться как резисторный функциональный элемент, а n--области как площадки для создания омических контактов к данному элементу.

Способ выращивания легированных ННК кремния, имеющих повышенный уровень легирования на начальной и конечной участках кристалла, осуществляется следующим образом. На поверхность ростовой подложки наносят частицы катализатора с последующим помещением ее в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и газофазное легирующее соединение РСl3, поступающие из жидкостного источника. Затем осуществляют выращивание кристаллов на начальной (стадии образования пьедестала), основной (стадии цилиндрического роста) и конечной (стадии образования зоны рекристаллизации) стадиях. Выращивание ведут последовательно из двух жидкостных источников. Количественное значение молярного отношения [PCl3]/[SiCl4]=m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m≥0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m=0.

Легирование ННК в процессе роста из жидкостного источника определяется тем, что позволяет в широких пределах изменять их удельную проводимость. Количественное значение величины m≥0,01 определяется тем, что при данном уровне легирования на начальной и конечной стадиях роста ННК достигается состояние вырождения (n--проводимость) с концентрацией примеси более 1019 см-3. Количественное значение молярного отношения m=0 на основной стадии роста определяется тем, что при подаче чистого SiCl4, ([РCl3]=0) легирование ННК осуществляется за счет растворения металла катализатора роста кристаллов и обеспечивается наиболее высокое электрическое сопротивление основной области материала ННК (10-3 Ом⋅см и более), являющейся рабочей в различных функциональных устройствах на основе ННК. Использование легирующего соединения PCl3 определяется тем, что фосфор, входящий в состав PCl3, имеет малую подвижность в кремнии (коэффициент диффузии не превышает 10-7 см2/с), что позволяет создавать участки ННК с различным уровнем легирования (n--n-n-), и является мелкой донорной примесью в кремнии, обеспечивающей электронный тип (n--тип) проводимости, поскольку тип проводимости ННК, формирующихся в отсутствие легирующего соединения РСl3 на основной стадии роста, также электронный.

Использование предлагаемого способа позволяет снизить переходные электрические сопротивления при создании электрических контактов к ННК до 0,01 величины от сопротивления основной части кристалла и тем самым существенно облегчить решение проблемы создания омических (с линейными вольт-амперными характеристиками) контактов к ННК и создания наноэлектронных устройств на их базе (чувствительных элементов многофункциональных датчиков, термоэлектрических наноустройств, многоканальных полевых транзисторов с оболочковым затвором, оперативных запоминающих устройств компьютеров высокой плотности информации и др.). При этом в процессе выращивания легированием фиксируются размеры основной рабочей области кристалла, что важно для повторяемости характеристик наноустройств при их серийном изготовлении, а контактные выводы ННК по механической прочности приближаются к прочности используемого для вывода металлического проводника.

Примеры осуществления способа

Пример 1

На поверхность исходной пластины кремния КЭФ (111) на электронно-лучевой установке ВАК-501 напылялась тонкая пленка Ni толщиной 2 нм. Подготовленные подложки разрезались и помещались в ростовую печь. В течение 2-10 минут при температуре 900-1100°С в потоке водорода осуществлялось сплавление Ni с Si и формировались нанокапли расплава Ni-Si. Затем в газовую фазу подавали тетрахлорид кремния SiCl4 и треххлористый фосфор PCl3 из первого источника при молярном соотношении [РСl3]/[SiCl4]=0,01 и выращивали легированные фосфором ННК Si. Время выращивания ННК на начальной стадии составляло 2 минуты. Затем прекращали подачу питающего материала из первого источника и осуществляли подачу SiCl4 из второго источника при m=0 и молярном соотношении [SiCl4]/[H2]=0,008 и выращивали ННК Si на основной стадии в течение 10 минут. Затем прекращали подачу питающего материала из второго источника и возобновляли подачу парогазовой смеси из первого источника при молярном соотношении [PCl3]/[SiCl4]=0,01. Время выращивания ННК на конечной стадии составляло 2 минуты. В результате были получены кристаллы с тремя областями легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=5,5⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=6,8⋅10-4 Ом⋅м, что соответствует концентрации фосфора в кремнии ~1017 см-3 и ~1019 см-3 соответственно.

Пример 2

Выращивание ННК проводилось аналогично примеру 1, но в качестве металла-катализатора ПЖК-роста использовалась электролитическая медь. Толщина тонкой пленки меди составляла 2 нм. Выращенные НК имели три области легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=1,8⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=3,2⋅10-4 Ом⋅м.

Пример 3

Выращивание ННК проводилось аналогично примеру 1, но толщина тонкой пленки никеля составляла 20 нм. Выращенные НК имели три области легирования (структура n--n-n-), причем n-область соответствует основной стадии роста кристалла и имеет электрическое сопротивление ρ=3,28⋅10-2 Ом⋅м, а n--области - начальной и конечной стадиям роста и частям кристалла, которые имеют сопротивление ρ=2,81⋅10-4 Ом⋅м.

Пример 4

Выполнение изобретения осуществляли аналогично примеру 1, но в газовую фазу подавали SiCl4 и PCl3 из первого источника при молярном соотношении [PCl3]/[SiCl4]=0,02. Удельное электрическое сопротивление n-области ННК составило ρ=8,3⋅10-3 Ом⋅м, а n--области - ρ=9,1⋅10-5 Ом⋅м.

Пример 5

Выращивание ННК проводилось аналогично примеру 1, но время выращивания на основной стадии роста составляло 20 минут. Полученные результаты соответствовали результатам примера 1.

Способ выращивания легированных нитевидных нанокристаллов кремния, включающий подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl и легирующее соединение РСl, поступающих из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, отличающийся тем, что выращивание кристаллов ведут последовательно из двух жидкостных источников, при этом в первом источнике на начальной стадии роста количественное значение молярного отношения [PCl]/[SiCl]=m выбирают из интервала m≥0,01, а во втором источнике на основной стадии роста количественное значение молярного отношения [PCl]/[SiCl]=m устанавливают как m=0.
Источник поступления информации: Роспатент

Показаны записи 161-170 из 245.
27.12.2015
№216.013.9dd6

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную...
Тип: Изобретение
Номер охранного документа: 0002572036
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e37

Способ установки пленочных образцов при измерении температурной зависимости электрического сопротивления

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора. Внутри корпуса образец размещают в С-образных зажимах с плоскими губками, выполненными из вольфрамовой...
Тип: Изобретение
Номер охранного документа: 0002572133
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f21

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов. Синтез осуществляют как...
Тип: Изобретение
Номер охранного документа: 0002572374
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f28

Мехатронно-модульный робот

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысить эффективность...
Тип: Изобретение
Номер охранного документа: 0002572381
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f29

Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания

Изобретение относится к робототехнике. Технический результат заключается в создании мехатронно-модульного робота с многоальтернативной оптимизацией моделей их структурного синтеза для ориентации в окружающей среде. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой...
Тип: Изобретение
Номер охранного документа: 0002572382
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f2a

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к робототехнике. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов, повышении эффективности ориентации в окружающей среде и надежности работы создаваемых...
Тип: Изобретение
Номер охранного документа: 0002572383
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a347

Ветродвигатель

Изобретение относится к области ветроэнергетики, в частности к ветродвигателям. Ветродвигатель содержит поворотное в горизонтальной плоскости основание с двумя вертикальными роторами, обтекатель и стабилизатор. Поворотное основание снабжено горизонтальной планкой, ориентированной параллельно...
Тип: Изобретение
Номер охранного документа: 0002573441
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a35f

Способ электрохимического изготовления углублений, образующих турбулизаторы на ребрах и в донной части охлаждающих каналов теплонапряженных машин, и устройство для его осуществления

Изобретение относится к получению турбулизаторов на ребрах и в донной части охлаждающих каналов теплонапряженных машин. Способ включает электрохимическую обработку канала электродом-инструментом, имеющим гибкий шаблон из эластичного материала со сквозными окнами по профилю донной части и ребер...
Тип: Изобретение
Номер охранного документа: 0002573465
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3fd

Способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве

Изобретение относится к области наноэлектроники и может быть использовано в различных областях наноиндустрии. Заявлен способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве. Для нагрева пленочного образца и измерения его электрического...
Тип: Изобретение
Номер охранного документа: 0002573623
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3fe

Кварцевый реактор для исследования температурной зависимости электросопротивления высокорезистивных объектов

Изобретение относится к наноэлектронике и наноэлектромеханике. Заявленный кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов, преимущественно, пленочных образцов из нанокомпозиционных материалов, содержит корпус, на внешней...
Тип: Изобретение
Номер охранного документа: 0002573624
Дата охранного документа: 20.01.2016
Показаны записи 161-170 из 289.
20.08.2015
№216.013.728a

Способ электрохимической обработки каналов соосно-струйной форсунки для камеры жидкостного ракетного двигателя

Изобретение относится к электрохимической обработке. Способ электрохимической обработки каналов соосно-струйной форсунки для камеры жидкостного ракетного двигателя, содержащей корпус с пилонами и каналами для подачи компонентов топлива, включает доводку геометрических размеров каналов форсунки...
Тип: Изобретение
Номер охранного документа: 0002560892
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7290

Установка для обработки нанокомпозитов в водородной плазме

Изобретение относится к вакуумно-плазменной обработке нанокомпозитов. Установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь, установленный внутри СВЧ-печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого...
Тип: Изобретение
Номер охранного документа: 0002560898
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72b0

Ротор торцевого электродвигателя

Изобретение относится к области электромашиностроения, а точнее к торцевым электродвигателям синхронного или асинхронного типа, а точнее к их роторам. Изобретение направлено на совершенствование технологии изготовления роторов, в частности на сокращение расходов на обмоточные работы с...
Тип: Изобретение
Номер охранного документа: 0002560930
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72b2

Стартер с планетарным редуктором

Изобретение относится к автомобилестроению, а именно к конструкциям стартеров с планетарным редуктором. Стартер с планетарным редуктором содержит переднюю и среднюю части корпуса и крышку, тяговое реле, тяговый электромотор и обгонную муфту, тяговый электромотор выполнен в виде водила с...
Тип: Изобретение
Номер охранного документа: 0002560932
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7307

Способ определения типа матрицы композитов металл-диэлектрик

Изобретение относится к области материаловедения, в частности к способам определения критической концентрации одной из фаз в многофазной системе. Способ определения типа матрицы композитов металл-диэлектрик основан на том, что для определения типа матрицы предварительно измеряют электрическое...
Тип: Изобретение
Номер охранного документа: 0002561017
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.73c0

Устройство ориентации гелиоустановки

Изобретение относится к гелиотехнике, а именно к приводным устройствам для ориентации гелиоустановки, и может быть использовано для ориентации любого коллектора лучевой энергии, облучаемого перемещаемым источником тепловой радиации. Устройство ориентации гелиоустановки дополнительно снабжено...
Тип: Изобретение
Номер охранного документа: 0002561207
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.73cf

Тракт охлаждения теплонапряженных конструкций

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками. Тракт охлаждения теплонапряженных конструкций содержит внутреннюю профилированную оболочку, на внешней...
Тип: Изобретение
Номер охранного документа: 0002561222
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.73d0

Испаритель криогенной жидкости

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, в котором расположены теплообменные элементы и нагреватель. Корпус выполнен в виде, как...
Тип: Изобретение
Номер охранного документа: 0002561223
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.73d3

Роторный вертикальный ветродвигатель

Изобретение относится к области ветроэнергетики. Изобретение обеспечивает упрощение конструкции ветродвигателя и повышение его надежности. Роторный вертикальный ветродвигатель содержит вращающиеся основания, траверсы, приемники энергии, центральную стойку с поворотным основанием. Каждая пара...
Тип: Изобретение
Номер охранного документа: 0002561226
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.73d4

Устройство ориентации гелиоустановки

Изобретение относится к гелиотехнике, а именно к приводным устройствам для ориентации гелиоустановки, и может быть использовано для ориентации любого коллектора лучевой энергии, облучаемого перемещаемым источником тепловой радиации. Устройство ориентации гелиоустановки дополнительно снабжено...
Тип: Изобретение
Номер охранного документа: 0002561227
Дата охранного документа: 27.08.2015
+ добавить свой РИД