×
25.08.2017
217.015.bf3b

Результат интеллектуальной деятельности: Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам определения расстояния с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения, в интересах снижения погрешности определения координат. Достигаемый технический результат – снижение погрешности определения расстояния до неподвижного источника радиоизлучения с подвижного объекта, оснащенного пеленгатором. Указанный результат достигается за счет того, что способ определения расстояния до неподвижного источника излучения движущимся пеленгатором основан на последовательном выполнении угловых маневров носителем пеленгатора с отворотом от источника излучения и определении расстояния до него, дополнительно угловой маневр совершают при постоянном угле пеленгации α через промежутки времени T, где , N - число измерений, измеряют изменения курсового угла ϕ носителя пеленгатора, движущегося со скоростью V, и определяют расстояние до источника излучения по формуле . 2 ил.

Предлагаемое изобретение относится к методам определения расстояния с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения.

Известен способ определения расстояния до источника радиоизлучения при пеленгации его из двух разнесенных пунктов [Ю.П. Мельников, С.В. Попов. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008. 432 с.: ил., стр. 11-14]. Определение расстояния до неподвижного источника излучения осуществляется путем пеленгации его с подвижного летательного аппарата из двух точек, расположенных на известном удалении друг от друга, за счет решения задачи определения сторон треугольника по двум углам и основанию. Недостатком способа является необходимость выполнения прямолинейного полета не на объект, а мимо него на довольно большом удалении с большими углами пеленгации (α>50°), и низкая точность определения координат источника излучения (σD≈(1,1÷1,8)⋅D⋅σα, где D - расстояние до объекта по линии траверза, σα - среднеквадратическая погрешность пеленгации).

Известен способ определения расстояния до источника радиоизлучения путем многократной его пеленгации и обработки результатов измерений с использованием методов наименьших квадратов поправок углов и весовых коэффициентов [Ю.П. Мельников, С.В. Попов. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008. 432 с.: ил., стр. 14-25]. За время прямолинейного пролета района разведки пеленгатор многократно определяет направление на источник излучения через известные интервалы времени. Результаты измерений обрабатываются с использованием методов наименьших квадратов поправок углов или весовых коэффициентов для снижения погрешности определения координат. Недостатком способа является необходимость выполнения прямолинейного полета не на объект излучения, а мимо него на довольно большом удалении продолжительное время с углами пеленгации 30°>α>120°. При этом потенциальная точность определения координат источника излучения составляет σD≈(0,7÷1,5)⋅D⋅σα по причине принятых допущений: в методе наименьших квадратов - положение опорной точки совпадает с положением неподвижного объекта; в весовом методе - весовые коэффициенты известны.

Наиболее близким по сущности и достигаемому эффекту (прототипом) является кинематический способ определения расстояния до неподвижного источника радиоизлучения с подвижного летательного аппарата [Ю.П. Мельников, С.В. Попов. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. М.: Радиотехника, 2008. 432 с.: ил., стр. 158-163. Защита радиолокационных систем от помех. Под ред. Канащенкова А.И. и Меркулова В.И. М.: Радиотехника, 2003. 416 c.; ил. стр. 320-322, 343-345]. Способ заключается в последовательном выполнении угловых маневров летательным аппаратом и нахождении расстояния до неподвижного объекта радиоизлучения как отношение скорости пеленгатора к угловой скорости линии визирования. При этом для нахождения величины угловой скорости используются результаты измерений пеленгов. Недостатком способа является необходимость организации движения летательного аппарата, на котором установлен пеленгатор, таким образом, чтобы он все время двигался с ускорением и с отворотом от объекта. При этом на некоторых этапах слежения (пеленгации) объект пеленгации не вполне наблюдаем (малая угловая скорость). Поэтому требуется выполнять несколько этапов выполнения маневра для достижения приемлемых точностей определения расстояния до неподвижного объекта. Величина ошибки определения расстояния даже с использованием дополнительного дифференциально-доплеровского метода составляет σD≈(0,04÷0,20)⋅D для углов пеленга α=60°÷30°, соответственно, и среднеквадратической погрешности пеленгации σα=2°, где D - расстояние до объекта.

Техническим результатом изобретения является снижение погрешности определения расстояния до неподвижного источника радиоизлучения с подвижного объекта, оснащенного пеленгатором, путем выполнения сближения его с источником под постоянным углом пеленгации, измерения величины изменения курсового угла подвижного объекта и по результатам измеренных значений изменения курсового угла определение и затем уточнение расстояния до неподвижного объекта.

Указанный результат достигается тем, что в способе определения расстояния до неподвижного источника излучения движущимся пеленгатором, основанном на последовательном выполнении угловых маневров носителем пеленгатора с отворотом от источника излучения и определении расстояния до него, согласно изобретению угловой маневр совершают при постоянном угле пеленгации α через промежутки времени Ti, где , N - число измерений, измеряют изменения курсового угла ϕi носителя пеленгатора, движущегося со скоростью V, и определяют расстояние до источника излучения по формуле .

Сущность изобретения представлена на фиг. 1, на которой показана схема расположения неподвижного источника излучения и траектория сближения носителя пеленгатора, движущегося с постоянным углом пеленгации к источнику излучения. При этом путь представляет собой логарифмическую спираль. На фиг. 1 обозначены: α - угол пеленгации источника излучения; ϕi - изменение курсового угла носителя пеленгатора между точками i-1 и i; Di - расстояние от носителя пеленгатора до источника излучения в i-й точке траектории; VP, Vi - векторы скорости носителя пеленгатора в точке Р (это может быть точка начала движения с постоянным углом пеленгации α после обнаружения (пеленгации) источника излучения) и в i-й точке соответственно.

Известно [И.Н. Бронштейн, К.А. Семендяев. Справочник по математике. Для инженеров и учащихся ВТУзов. М.: Наука, 1980. 976 с., стр. 184-185], что удаление тела, движущегося по логарифмической спирали к ее центру, изменяется по закону Di=Di-1⋅exp(-ctg(α)⋅ϕi), где ϕi - угол, образованный прямыми, соединяющими центр спирали с точками спирали Di-1 и Di. При этом пройденный путь составляет . Выразим Di-1 из второй формулы и подставим в первую формулу. После незначительных преобразований получим выражение . Из геометрии, представленной на фиг. 1, следует, что угол ϕi также соответствует углу между касательными прямыми к спирали в точках i-1 и i (углу между векторами скорости в i-1 и i точках), то есть полученная формула позволяет определять расстояние до источника излучения по изменению курсового угла носителя пеленгатора.

Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором осуществляется по следующему алгоритму:

1. Носитель пеленгатора осуществляет движение в направлении источника излучения до его обнаружения (пеленгации). Обнаружение и измерение пеленга источника излучения в зависимости от типа излучения и его диапазона могут быть осуществлены соответствующими пеленгаторами. Например, радиоизлучение может быть обнаружено, и определен пеленг на его источник с использованием станции непосредственной радиотехнической разведки [http://www.ckba.net/main.php].

2. Носитель пеленгатора разворачивается таким образом, чтобы между вектором скорости носителя и направлением на источник излучения был заданный угол (угол пеленгации α), и продолжает дальнейшее движение с выдерживанием заданного угла пеленгации.

3. Через промежутки времени Тi на борту носителя измеряют изменения курсового угла носителя ϕi и осуществляют определение расстояния до источника излучения. Изменение курсового угла может быть измерено с использованием существующих навигационных систем, например системой спутниковой навигации GPS или ГЛОНАС [old.glonass-portal.ru/catalog/glonass/navigation/plane].

Было осуществлено имитационное моделирование сближения носителя пеленгатора с источником излучения и получена статистическая зависимость среднеквадратической ошибки измеренного расстояния δD/D до источника излучения от расстояния до него. Зависимость получена при следующих допущениях:

скорость носителя пеленгатора V=150 м/с;

начальная дальность обнаружения источника излучения 50 км;

угол пеленгации α=60° измеряется пеленгатором со среднеквадратической погрешностью σα=2°;

значения курсового угла и скорости носителя измеряются без ошибки.

На фиг. 2 представлены зависимости среднеквадратической ошибки измеренного расстояния до источника излучения от расстояния до него способа прототипа (штриховая линия) и предлагаемого способа, полученные с использованием имитационной модели (сплошная линия). Из фиг. 2 видно, что среднеквадратическая ошибка определения расстояния до источника излучения с использованием предлагаемого способа снижается в 1,3-1,9 раза.

Изложенные сведения свидетельствуют о возможности снижения погрешности определения расстояния до неподвижного излучающего объекта с носителя, оснащенного пеленгатором, путем сближения с постоянным углом пеленгации.

Кроме того, достоинством предложенного способа от способа-прототипа является простота его реализации.

Таким образом, заявленный способ определения расстояния до неподвижного источника излучения движущимся носителем пеленгатора обеспечивает снижение погрешности определения расстояния до источника с носителя, выполняющего сближение с источником под постоянным углом пеленгации.

Предлагаемое решение соответствует критерию «промышленная применимость», так как совокупность характеризующих его признаков обеспечивает возможность его существования.

Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором, основанный на последовательном выполнении угловых маневров носителем пеленгатора с отворотом от источника излучения и определении расстояния до него, отличающийся тем, что угловой маневр совершают при постоянном угле пеленгации α через промежутки времени T, где , N - число измерений, измеряют изменения курсового угла ϕ носителя пеленгатора, движущегося со скоростью V, и определяют расстояние до источника излучения по формуле .
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором
Источник поступления информации: Роспатент

Показаны записи 211-220 из 265.
08.02.2020
№220.018.0037

Способ структурной адаптации системы связи

Изобретение относится к электросвязи. Технический результат заключается в расширении арсенала средств. Для основной структуры системы связи в интервале ее эффективной работы, определяемом пороговым значением КПД передачи информации системы связи η, находят резервную структуру, удовлетворяющую...
Тип: Изобретение
Номер охранного документа: 0002713329
Дата охранного документа: 05.02.2020
08.02.2020
№220.018.00c1

Крылатая ракета и способ ее боевого применения

Группа изобретений относится к области ракетного вооружения и, в частности, к управляемым ракетам, применяемым по наземным и надводным целям. Технический результат - повышение точности наведения боевых элементов ракеты. Крылатая ракета содержит корпус, крыло с органами управления по крену,...
Тип: Изобретение
Номер охранного документа: 0002713546
Дата охранного документа: 05.02.2020
17.02.2020
№220.018.032b

Устройство для эвакуации самолетов

Изобретение относится к транспортировке воздушных судов. Устройство для эвакуации самолетов содержит тягач (9), тележку, подъемный механизм. Подъемный механизм выполнен в виде домкратов (10), на которых закреплена подъемная платформа (11) с размещенным на ней вращающимся в горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002714337
Дата охранного документа: 14.02.2020
17.02.2020
№220.018.0362

Способ формирования контурного изображения

Изобретение относится к технологиям обработки изображений и может быть использовано в системах технического зрения. Технический результат заключается в снижении чувствительности к шумам за счет уменьшения размерности формируемого изображения. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002714381
Дата охранного документа: 14.02.2020
20.02.2020
№220.018.03f1

Способ самонаведения на наземную цель

Изобретение относится к области управления летательными аппаратами и может быть использовано для наведения на наземную цель по ее радиоизлучению. Способ самонаведения на наземную цель включает двухмерное пеленгование цели, определение рассогласования между направлением на нее и направлением...
Тип: Изобретение
Номер охранного документа: 0002714531
Дата охранного документа: 18.02.2020
29.02.2020
№220.018.0790

Устройство имитации вибрирующих объектов

Изобретение относится к средствам обеспечения скрытности вооружения и военной техники (ВВТ) от оптико-электронных средств разведки. Оно может быть использовано для имитации вибрационных колебаний поверхности ложных целей и макетов ВВТ при их разведке лазерными локационными станциями, а также...
Тип: Изобретение
Номер охранного документа: 0002715372
Дата охранного документа: 26.02.2020
07.03.2020
№220.018.0a1b

Способ определения видов радиолокационных сигналов в автокорреляционном приемнике

Изобретение относится к области радиотехники, в частности, к способам и технике радиотехнического мониторинга источников радиоизлучений. Технический результат выражается в расширении видов радиолокационных сигналов, контролируемых в ходе радиотехнического мониторинга. Указанный технический...
Тип: Изобретение
Номер охранного документа: 0002716017
Дата охранного документа: 05.03.2020
13.03.2020
№220.018.0b14

Балансирная тележка с приводом на каждое колесо

Изобретение относится к ходовым системам машин. Балансирная тележка с приводом на каждое колесо, содержит поперечную балку, на концах которой расположены продольные балансиры, и укрепленные на концах балансиров колеса. Дополнительно введены вторичная силовая установка, кинематически связанная с...
Тип: Изобретение
Номер охранного документа: 0002716395
Дата охранного документа: 11.03.2020
13.03.2020
№220.018.0b96

Устройство проверки цепей пуска и пристрелки блоков неуправляемых авиационных ракет

Изобретение относится к техническим средствам диагностирования и может быть использовано для проверки контроля цепей пуска и холодной пристрелки блоков неуправляемых авиационных ракет. Устройство содержит блоки измерительный, пристрелки, индикации проверок и блок замыкателей цепей пуска,...
Тип: Изобретение
Номер охранного документа: 0002716375
Дата охранного документа: 11.03.2020
21.03.2020
№220.018.0e25

Впаиваемая заклепка

Изобретение относится к авиационной технике, в частности к конструкции планера летательного аппарата, а также может быть использовано в судостроении, машиностроении и других отраслях народного хозяйства для получения неразъемных соединений при производстве и ремонте элементов конструкции в...
Тип: Изобретение
Номер охранного документа: 0002717285
Дата охранного документа: 19.03.2020
Показаны записи 61-66 из 66.
13.11.2019
№219.017.e094

Способ наведения летательного аппарата на источник излучения

Изобретение относится к области управления летательными аппаратами и может быть использовано для их гарантированного наведения на наземный источник излучения по известному лишь только пеленгу без определения координат источника. Технический результат – повышение эффективности наведения за счет...
Тип: Изобретение
Номер охранного документа: 0002705669
Дата охранного документа: 11.11.2019
21.11.2019
№219.017.e474

Способ локальной навигации подвижного объекта

Изобретение относится к навигации и предназначено для определения координат подвижного объекта на взлетно-посадочной полосе (рулежной дорожке, автодороге и т.д.) с установленными на ней кодовыми метками, а также координат и габаритов повреждений и препятствий на взлетно-посадочной полосе. Может...
Тип: Изобретение
Номер охранного документа: 0002706444
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e478

Способ определения координат летательного аппарата относительно взлетно-посадочной полосы

Изобретение относится к навигации и может быть использовано для автоматического управления посадкой летательного аппарата, коррекции инерциальных навигационных систем на стартовой позиции в процессе взлета. Способ определения координат летательного аппарата относительно взлетно-посадочной...
Тип: Изобретение
Номер охранного документа: 0002706443
Дата охранного документа: 19.11.2019
29.11.2019
№219.017.e791

Способ наведения летательного аппарата на источник разового излучения

Изобретение относится к способу наведения летательного аппарата на источник разового излучения. Способ заключается в том, что определяют курсовой угол при пеленговании на источник излучения, выстраивают прямую линию заданного пути через точку пеленгования в направлении на источник, выводят...
Тип: Изобретение
Номер охранного документа: 0002707491
Дата охранного документа: 26.11.2019
21.04.2023
№223.018.4f8b

Способ контроля для функциональной реконфигурации вычислительной системы

Изобретение относится к способам контроля и динамической реконфигурации вычислительных систем. Технический результат состоит в повышении отказоустойчивости вычислительной системы. В способе контролируют работоспособность и функциональную эффективность функциональных модулей вычислительных...
Тип: Изобретение
Номер охранного документа: 0002792920
Дата охранного документа: 28.03.2023
27.05.2023
№223.018.71f6

Способ определения дальности до наземного источника излучения с самолета, оснащенного азимутальным фазовым пеленгатором

Изобретение относится к методам определения дальности до источника излучения (ИИ) угломерным способом с использованием фазового пеленгатора, размещенного на борту самолета, выполняющего полет в сторону источника излучения. Техническим результатом является повышение точности определения...
Тип: Изобретение
Номер охранного документа: 0002796121
Дата охранного документа: 17.05.2023
+ добавить свой РИД