×
25.08.2017
217.015.be86

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРОННОГО ПРИБОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к электровакуумной технике, к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. В способе изготовления фотоэлектронного прибора, включающем изготовление корпуса прибора, катодного узла, коллектора электронов, монтаж внутренних деталей и узлов, сварку узлов прибора, загрузку всех узлов в высоковакуумную установку финишной сборки, откачку всей системы, термическое обезгаживание всех узлов в вакууме, электронное обезгаживание МКП и коллектора электронов в вакууме, изготовление фотокатода на катодном узле, герметизацию прибора, выгрузку ФЭП из установки финишной сборки, после загрузки в высоковакуумную установку финишной сборки катодного узла, корпуса с микроканальными пластинами и коллектора электронов осуществляют откачку всей системы до давления не более 10 Па, термическое обезгаживание всех узлов в вакууме в течение не менее 4 ч при температуре от 300 до 400°С, электронное обезгаживание МКП и коллектора электронов, для чего в течение не менее 30 сек при температуре от 0 до 400°С направляют электронный поток от входа к выходу МКП и далее на коллектор электронов, после чего корпус с МКП при помощи манипулятора переворачивают и направляют электронный поток от выхода к входу МКП и далее на коллектор электронов, синхронно меняя полярность напряжения питания между входом и выходом МКП, выдерживают в течение не менее 30 сек, снова переворачивают корпус с МКП, меняя полярность напряжения, и повторяют так в течение не менее 2 ч до полного обезгаживания МКП, постепенно увеличивая напряжение на МКП и выходной ток МКП до значений, не ухудшающих параметры МКП, после чего формируют фотокатод на катодном узле и далее корпус с МКП устанавливают на коллектор электронов, а катодный узел на корпус и выполняют герметизацию прибора. 2 ил.

Область техники

Изобретение относится к электровакуумной технике, в частности к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП).

Уровень техники

Фотоэлектронный прибор представляет собой электровакуумное устройство, содержащее корпус, фотокатод, эмитирующий электроны под действием оптического излучения, умножительную систему на основе микроканальных пластин и коллектор электронов, в качестве которого может быть использован анод, содержащий один или несколько выходов, люминесцентный экран или электронно-чувствительная матрица. К фотоэлектронным приборам относятся электронно-оптические преобразователи (ЭОП), фотоэлектронные умножители (ФЭУ), многоанодные ФЭУ, координатно-чувствительные детекторы (КЧД).

Основная причина выхода из строя фотоэлектронных приборов с микроканальными пластинами связана с изменением свойств фотокатода под воздействием ионной бомбардировки, возникающей в результате образования ионов в процессе электронно-стимулированной десорбции при ударе электрона о стенку канала микроканальной пластины. Бомбардировка фотокатода и стенок каналов МКП ионами приводит, с одной стороны, к эмиссии вторичных электронов и появлению паразитного сигнала, с другой - к резкому снижению чувствительности фотокатода. Сочетание большого количества сорбированного МКП газа с малым внутренним объемом фотоэлектронного прибора приводит к значительному газовыделению, ухудшению вакуума и отравлению фотокатода в работающем приборе при прохождении электронного потока через МКП. Все эти явления приводят к значительному снижению срока службы.

Самым распространенным решением устранения указанных недостатков является нанесение на входную поверхность МКП специальной тонкой пленки, прозрачной для электронов, но не прозрачной для ионов. Такая ионно-барьерная пленка, изготавливаемая главным образом из окиси алюминия, позволяет создавать фотоэлектронные приборы с долговечностью до 10000 ч. Однако использование ионно-барьерной пленки приводит к снижению эффективности сбора фотоэлектронов с ~60% (в случае без ионно-барьерной пленки) до ~35% [Т. Jinno, et al. Lifetime-extended MCP-PMT. Nuclear Instruments and Methods in Physics Research A 629 (2011) 111-117]. Также при работе электронно-оптических преобразователей III поколения с ионно-барьерными пленками возникли затруднения в распознавании объектов с ярко светящимися элементами, вокруг которых возникает широкий слепящий ореол [С.В. Куклев, Д.С. Соколов, И.Н. Зайдель. Электронно-оптические преобразователи. - М.: Машиностроение, 2004]. Поэтому возникла проблема создания фотоэлектронных приборов без ионно-барьерной пленки на входной поверхности МКП и одновременно с долговечностью, не уступающей долговечности приборов с ионно-барьерной пленкой.

Для устранения паразитных явлений, вызванных процессом электронно-стимулированной десорбции, применяются и другие различные конструктивные и технологические решения.

Известен фотоэлектронный умножитель [патент США №2014361683 МПК H01J 43/04. Electrostatic suppression of ion feedback in a microchannel plate photomultiplier. Опубл. 11.12.2014], содержащий дополнительный электрод, представляющий собой тонкую сетку, между фотокатодом и микроканальной пластиной. ФЭУ также содержит источник питания, обеспечивающий подачу напряжения на электроды, причем на сетку подается потенциал, равный или больше, чем потенциал на входе МКП, обеспечивая тем самым потенциальный барьер для движения ионов от МКП к фотокатоду. Недостатками данного технического решения являются невысокий динамический диапазон, поскольку барьерная сетка задерживает до 20-30% фотоэлектронов; большое временное разрешение вследствие значительного расстояния между фотокатодом и входом МКП и наличием потенциального барьера между сеткой и входом МКП, вызывающего торможение фотоэлектронов; низкая вибрационная прочность прибора из-за наличия тонкой сетки.

Известен способ изготовления ЭОП с МКП без ионно-барьерной пленки [патент РФ №2372684 МПК H01J 31/50. Способ изготовления электронно-оптического преобразователя и устройство для его реализации. Опубл. 10.11.2009], принятый за прототип, в котором после изготовления МКП по стандартной технологии на ее входную и выходную поверхности наносят изоляционный или полупроводниковый слой, проводящий слой и второй изоляционный или полупроводниковый слой, далее после проведения первого электронного обезгаживания МКП и экрана в корпусе ЭОП формируют индивидуальные газопоглотители в каналах МКП в виде покрытия на стенках каналов МКП со стороны входа, выхода МКП или с обеих сторон из вещества, обладающего высокой сорбционной способностью и коэффициентом вторичной эмиссии больше единицы, а также формируют индивидуальные газопоглотители между каналами МКП на входной, выходной поверхностях МКП или с обеих сторон и на экране в виде покрытия из вещества, обладающего высокой сорбционной способностью, после этого проводят второе электронное обезгаживание МКП и экрана в корпусе ЭОП. Недостатком данного технического решения является недостаточно высокий срок службы ЭОП без ионно-барьерной пленки.

Техническим результатом предлагаемого технического решения является увеличение срока службы ЭОП без ионно-барьерной пленки.

Раскрытие изобретения

Указанный технический результат достигается тем, что в способе изготовления фотоэлектронного прибора, включающем изготовление корпуса прибора, катодного узла, коллектора электронов, монтаж внутренних деталей и узлов, сварку узлов прибора, загрузку всех узлов в высоковакуумную установку финишной сборки, откачку всей системы, термическое обезгаживание всех узлов в вакууме, электронное обезгаживание МКП и коллектора электронов в вакууме, изготовление фотокатода на катодном узле, герметизацию прибора, выгрузку ФЭП из установки финишной сборки, после загрузки в высоковакуумную установку финишной сборки катодного узла, корпуса с микроканальными пластинами и коллектора электронов, осуществляют откачку всей системы до давления не более 10-8 Па, термическое обезгаживание всех узлов в вакууме в течение не менее 4 ч при температуре от 300 до 400°С, электронное обезгаживание МКП и коллектора электронов, для чего в течение не менее 30 сек при температуре от 0 до 400°С направляют электронный поток от входа к выходу МКП и далее на коллектор электронов, после чего корпус с МКП при помощи манипулятора переворачивают и направляют электронный поток от выхода к входу МКП и далее на коллектор электронов, синхронно меняя полярность напряжения питания между входом и выходом МКП, выдерживают в течение не менее 30 сек, снова переворачивают корпус с МКП, меняя полярность напряжения, и повторяют так в течение не менее 2 ч до полного обезгаживания МКП, постепенно увеличивая напряжение на МКП и выходной ток МКП до значений, не ухудшающих параметры МКП, после чего формируют фотокатод на катодном узле и далее корпус с МКП устанавливают на коллектор электронов, а катодный узел на корпус и выполняют герметизацию прибора.

Краткое описание чертежей

Сущность предлагаемого способа изготовления фотоэлектронного прибора поясняется фиг. 1, на которой схематично изображена высоковакуумная установка для выполнения финишной сборки ФЭП с загруженными в нее сборочными единицами, и фиг. 2, на которой показано выполнение электронного обезгаживания МКП и коллектора электронов в высоковакуумной установке, где 1 - основной отсек для формирования фотокатода, 2 - модуль для электронного обезгаживания и герметизации, 3 - катодный узел, 4 - корпус прибора с МКП, 5 - коллектор электронов, 6 - электронная пушка для обезгаживания коллектора электронов, 7 и 8 - манипулятор.

Осуществление изобретения

Предлагаемый способ изготовления фотоэлектронного прибора реализован следующим образом.

В модуль 2 для электронного обезгаживания и герметизации высоковакуумной установки финишной сборки загружают катодный узел 3, корпус 4 с МКП (общим числом от одной до трех) и коллектор 5 электронов (фиг. 1). Обычно используют корпуса с микроканальными платанами общим числом от одной до трех, но могут использовать корпуса и с большим числом микроканальных платан. После загрузки при помощи манипулятора 7 катодный узел 3 перемещают в основной отсек 1, а корпус 4 с МКП и коллектор 5 электронов остается напротив электронной пушки 6 (фиг. 2). После этого вакуумную камеру откачивают до давления не более 10-8 Па, опускают печь и модуль 2 прогревают при температуре 390°С (допустимо от 300 до 400°С) в течение не менее 4 ч (обычно 10-12 ч). После завершения термического обезгаживания температуру в камере снижают до 25°С и выполняют электронное обезгаживание коллектора 5 электронов и МКП. Допускается выполнять электронное обезгаживание при температуре от 0 до 400°С. Повышение температуры, при которой выполняется электронное обезгаживание коллектора электронов и МКП, способствует повышению интенсивности газовыделения, при этом общее время электронного обезгаживания дополнительно сокращается до 50%. На МКП подают напряжение, постепенно увеличивая в течение всего процесса электронного обезгаживания от 400 до 900 В для одной МКП (возможно дальнейшее увеличение напряжения до значения, не ухудшающего параметры МКП). Также отрицательное напряжение (до 200 В) относительно входа МКП подают на электронную пушку 6. В течение заданного времени (от 30 сек до нескольких часов) электронный поток облучает входную поверхность МКП, при этом выполняется контроль выходного тока (постепенно увеличивая его в течение всего процесса электронного обезгаживания от 2 до 7 мкА, возможно дальнейшее увеличение тока до значения, не ухудшающего параметры МКП). С выхода МКП поток электронов попадает на коллектор 5 электронов, находящийся под более высоким потенциалом, тем самым выполняя его обезгаживание. Далее при помощи манипулятора 8 корпус 4 с МКП переворачивают так, чтобы поток электронов с электронной пушки 6 облучал выходную поверхность МКП, и одновременно меняют полярность потенциалов на входе и выходе МКП. Таким образом, меняя поверхность МКП относительно падающего потока электронов, выполняют двустороннее обезгаживание МКП. Далее эти операции повторяют в течение не менее 2 ч до тех пор, пока микроканальная пластина не будет полностью обезгажена. По окончании обезгаживания МКП и коллектора 5 электронов начинается процесс формирования фотокатода на катодном узле 3. После этого манипулятором 7 катодный узел 3 переносят на корпус 4 с МКП и выполняют герметизацию корпуса 4 с МКП с коллектором электронов 5 и катодным узлом 3. Время, затраченное на электронное обезгаживание МКП, при использовании данного способа сокращается на 25-40%, при этом остаточное газовыделение МКП существенно ниже (примерно в 2,4 раза), чем при стандартном одностороннем обезгаживании МКП.

Использование предлагаемого способа изготовления фотоэлектронного прибора по сравнению с прототипом позволит существенно снизить остаточное газосодержание в начальной части каналов МКП за счет более тщательного двустороннего электронного обезгаживания МКП по сравнению с односторонним обезгаживанием, что позволит существенно снизить скорость деградации фотокатода и увеличить срок службы фотоэлектронных приборов без ионно-барьерной пленки, снизив при этом трудоемкость изготовления прибора.

Способ изготовления фотоэлектронного прибора, включающий изготовление корпуса прибора, катодного узла, коллектора электронов, монтаж внутренних деталей и узлов, сварку узлов прибора, загрузку всех узлов в высоковакуумную установку финишной сборки, откачку всей системы, термическое обезгаживание всех узлов в вакууме, электронное обезгаживание МКП и коллектора электронов в вакууме, изготовление фотокатода на катодном узле, герметизацию прибора, выгрузку ФЭП из установки финишной сборки, отличающийся тем, что после загрузки в высоковакуумную установку финишной сборки катодного узла, корпуса с микроканальными пластинами и коллектора электронов осуществляют откачку всей системы до давления не более 10 Па, термическое обезгаживание всех узлов в вакууме в течение не менее 4 ч при температуре от 300 до 400°C, электронное обезгаживание МКП и коллектора электронов, для чего в течение не менее 30 сек при температуре от 0 до 400°C направляют электронный поток от входа к выходу МКП и далее на коллектор электронов, после чего корпус с МКП при помощи манипулятора переворачивают и направляют электронный поток от выхода к входу МКП и далее на коллектор электронов, синхронно меняя полярность напряжения питания между входом и выходом МКП, выдерживают в течение не менее 30 сек, снова переворачивают корпус с МКП, меняя полярность напряжения, и повторяют так в течение не менее 2 ч до полного обезгаживания МКП, постепенно увеличивая напряжение на МКП и выходной ток МКП до значений, не ухудшающих параметры МКП, после чего формируют фотокатод на катодном узле и далее корпус с МКП устанавливают на коллектор электронов, а катодный узел на корпус и выполняют герметизацию прибора.
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРОННОГО ПРИБОРА
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРОННОГО ПРИБОРА
Источник поступления информации: Роспатент

Показаны записи 201-210 из 726.
27.01.2015
№216.013.2143

Волоконно-оптическое устройство дуговой защиты с определением местоположения электрической дуги

Изобретение относится к электротехнике и предназначено для защиты от электрической дуги короткого замыкания в электрооборудовании, в частности в комплектных распределительных устройствах (КРУ) 0,4-40 кВ. Техническим результат - упрощение конструкции устройства дуговой защиты за счет сокращения...
Тип: Изобретение
Номер охранного документа: 0002539963
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.22ab

Генератор нейтронов

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Технический результат - повышение надежности и уменьшение габаритов...
Тип: Изобретение
Номер охранного документа: 0002540328
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.253a

Запаянная нейтронная трубка

Изобретение относится к устройствам для получения нейтронов и может быть использовано для нейтронного анализа для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Техническим результатом изобретения является увеличение эффективности источника ионов...
Тип: Изобретение
Номер охранного документа: 0002540983
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ae

Электрическая взрывная сеть

Изобретение относится к области взрывных работ, в частности к электрическим устройствам, предназначенным для одновременного инициирования нескольких зарядов взрывчатого вещества или нескольких точек одного заряда. Может быть использовано в различных областях взрывной техники. Электрическая...
Тип: Изобретение
Номер охранного документа: 0002541355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26b1

Устройство для определения направления на источник сигнала

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый технический результат - возможность селекции источника сигналов в трехмерном пространстве. Технический результат достигается тем, что устройство для определения направления на источник сигнала содержит первую...
Тип: Изобретение
Номер охранного документа: 0002541358
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c2

Резонатор силочувствительный

Изобретение относится к области измерения механических параметров. Резонатор силочувствительный с изгибной формой колебаний выполнен в виде двух идентичных параллельно расположенных между собой стержней, одни концы которых жестко соединены между собой и с первым элементом приложения измеряемой...
Тип: Изобретение
Номер охранного документа: 0002541375
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2700

Способ измерения асимметрии распада поляризованных пучков

Изобретение относится к области ядерной физики. Способ измерения асимметрии распада поляризованных пучков включает в себя пропускание поляризованного пучка частиц через контролируемую зону, регистрацию заряженных частиц, испускаемых асимметрично относительно спина распадающихся частиц,...
Тип: Изобретение
Номер охранного документа: 0002541437
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2744

Блок излучателя нейтронов

Изобретение относится к устройствам импульсных излучателей с получением разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном блоке излучателя нейтронов нейтронная трубка (8) с металлическим корпусом (9) герметично закреплена на торце корпуса блока схемы...
Тип: Изобретение
Номер охранного документа: 0002541509
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2745

Включатель инерционный

Изобретение относится к инерционным датчикам порогового действия и предназначено для контроля над достижением ускорений движущихся объектов пороговых уровней, в том числе при столкновении с другими объектами. Включатель инерционный содержит герметичный корпус, направляющую втулку для свободного...
Тип: Изобретение
Номер охранного документа: 0002541510
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.274e

Стабилизированный преобразователь постоянного напряжения

Изобретение относится к области электротехники. Технический результат заключается в повышении стабильности выходного напряжения на нагрузке в более широком диапазоне входных напряжений и температур окружающей среды, а также обеспечении защиты от тока короткого замыкания в нагрузке как полевого...
Тип: Изобретение
Номер охранного документа: 0002541519
Дата охранного документа: 20.02.2015
Показаны записи 201-210 из 559.
27.01.2015
№216.013.2143

Волоконно-оптическое устройство дуговой защиты с определением местоположения электрической дуги

Изобретение относится к электротехнике и предназначено для защиты от электрической дуги короткого замыкания в электрооборудовании, в частности в комплектных распределительных устройствах (КРУ) 0,4-40 кВ. Техническим результат - упрощение конструкции устройства дуговой защиты за счет сокращения...
Тип: Изобретение
Номер охранного документа: 0002539963
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.22ab

Генератор нейтронов

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Технический результат - повышение надежности и уменьшение габаритов...
Тип: Изобретение
Номер охранного документа: 0002540328
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.253a

Запаянная нейтронная трубка

Изобретение относится к устройствам для получения нейтронов и может быть использовано для нейтронного анализа для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Техническим результатом изобретения является увеличение эффективности источника ионов...
Тип: Изобретение
Номер охранного документа: 0002540983
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ae

Электрическая взрывная сеть

Изобретение относится к области взрывных работ, в частности к электрическим устройствам, предназначенным для одновременного инициирования нескольких зарядов взрывчатого вещества или нескольких точек одного заряда. Может быть использовано в различных областях взрывной техники. Электрическая...
Тип: Изобретение
Номер охранного документа: 0002541355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26b1

Устройство для определения направления на источник сигнала

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый технический результат - возможность селекции источника сигналов в трехмерном пространстве. Технический результат достигается тем, что устройство для определения направления на источник сигнала содержит первую...
Тип: Изобретение
Номер охранного документа: 0002541358
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c2

Резонатор силочувствительный

Изобретение относится к области измерения механических параметров. Резонатор силочувствительный с изгибной формой колебаний выполнен в виде двух идентичных параллельно расположенных между собой стержней, одни концы которых жестко соединены между собой и с первым элементом приложения измеряемой...
Тип: Изобретение
Номер охранного документа: 0002541375
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2700

Способ измерения асимметрии распада поляризованных пучков

Изобретение относится к области ядерной физики. Способ измерения асимметрии распада поляризованных пучков включает в себя пропускание поляризованного пучка частиц через контролируемую зону, регистрацию заряженных частиц, испускаемых асимметрично относительно спина распадающихся частиц,...
Тип: Изобретение
Номер охранного документа: 0002541437
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2744

Блок излучателя нейтронов

Изобретение относится к устройствам импульсных излучателей с получением разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном блоке излучателя нейтронов нейтронная трубка (8) с металлическим корпусом (9) герметично закреплена на торце корпуса блока схемы...
Тип: Изобретение
Номер охранного документа: 0002541509
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2745

Включатель инерционный

Изобретение относится к инерционным датчикам порогового действия и предназначено для контроля над достижением ускорений движущихся объектов пороговых уровней, в том числе при столкновении с другими объектами. Включатель инерционный содержит герметичный корпус, направляющую втулку для свободного...
Тип: Изобретение
Номер охранного документа: 0002541510
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.274e

Стабилизированный преобразователь постоянного напряжения

Изобретение относится к области электротехники. Технический результат заключается в повышении стабильности выходного напряжения на нагрузке в более широком диапазоне входных напряжений и температур окружающей среды, а также обеспечении защиты от тока короткого замыкания в нагрузке как полевого...
Тип: Изобретение
Номер охранного документа: 0002541519
Дата охранного документа: 20.02.2015
+ добавить свой РИД