×
25.08.2017
217.015.bcf0

Результат интеллектуальной деятельности: СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерения ядерных излучений, а именно к измерению в режиме мониторинга плотности невозмущенного потока радона с поверхности грунта. Способ мониторинга плотности невозмущенного потока радона с поверхности грунта содержит этапы, на которых выполняют регистрацию альфа-излучения продуктов распада радона, накопленных внутри установленной на поверхность грунта накопительной камеры, в корпусе которой выполнены отверстия для частичного выхода почвенного газа, при этом предварительно на месте установки накопительной камеры производят измерение плотности потока радона и торона с помощью радиометра, определяют количество импульсов от торона и альфа-излучающих дочерних продуктов его распада N, затем устанавливают накопительную камеру на поверхность грунта и производят непрерывные последовательные измерения количества импульсов с длительностью одного измерения τ от 60 до 900 с закрепленным внутри накопительной камеры сцинтилляционным альфа-детектором, чувствительная поверхность которого расположена не менее чем на 0,10 м выше поверхности грунта, определяют поправочный коэффициент K для перевода скорости счета импульсов от радона и альфа-излучающих дочерних продуктов его распада в единицы измерения плотности потока радона, а плотность потока радона определяют из выражения: где q(t) - плотность потока радона с поверхности грунта в момент времени t, Бк м с; K - поправочный коэффициент, (Бк м с)/(имп. с); N(t) - суммарное количество зарегистрированных за длительность одного измерения τ импульсов от радона, торона и альфа-излучающих дочерних продуктов их распада в момент времени t, имп.; N - количество импульсов от торона и альфа-излучающих дочерних продуктов его распада за длительность одного измерения τ, имп.; τ - длительность одного измерения, с. Технический результат – упрощение способа проведения мониторинга, повышение достоверности полученных результатов. 3 ил.

Изобретение относится к области измерения ядерных излучений, а именно к измерению в режиме мониторинга плотности невозмущенного потока радона с поверхности грунта, и может быть использовано для исследования внутрисуточных вариаций плотности потока радона, оценки радоноопасности территорий, плотности ионизации приземного слоя атмосферы, изучения предвестников землетрясений, процессов и механизмов газообмена между грунтом и атмосферой, литосферно-атмосферных связей.

Известен способ измерения плотности потока радона с поверхности грунта по бета- и гамма-излучению, заключающийся в регистрации бета-излучения продуктов распада радона, накопленных внутри накопительной камеры, установленной на поверхность грунта [RU 2428715 С1, МПК G01T 1/16 (2006.01), опубл. 10.09.2011]. Согласно этому способу производят измерения суммарного количества импульсов от бета- и гамма-излучения продуктов распада радона установленным внутри накопительной камеры счетчиком бета- и гамма-излучения, чувствительная поверхность которого расположена таким образом, чтобы на нее не попадало бета-излучение почвенных радионуклидов, а основание накопительной камеры закрыто диффузионным фильтром, предотвращающим попадание торона из грунта. Перед измерением камеру проветривают в течение не менее чем 900 с, затем при открытой камере проводят фоновые измерения в течение t1 не менее 300 с, камеру закрывают и в течение промежутка времени t2 от 2400 до 48000 с производят измерение количества импульсов от бета- и гамма-излучения. Плотность потока радона определяют из выражения

где q - плотность потока радона с поверхности грунта, Бк м-2 с-1;

N - измеренное суммарное количество импульсов за время t2, имп.;

- измеренное фоновое значение количества импульсов за время t1, имп.;

ε - поправочный коэффициент, имп. с-1 Бк-1;

S - площадь основания накопительной камеры, м2;

λ - постоянная распада радона, c-1.

t1 - время измерения фона, с;

t2 - время накопления радона, с.

Процесс измерений усложнен из-за того, что приходится открывать и закрывать накопительную камеру, периодически меняя фильтр в ее основании, что приводит к изменению условий измерения. Этим способом измеряют плотность возмущенного потока радона, то есть измеряют заниженное значение по сравнению с истинным значением плотности невозмущенного потока. Таким образом, все это приводит к увеличению суммарной неопределенности результата измерения.

Известен способ измерения плотности невозмущенного потока радона с поверхности грунта [Stieff L.R., Kotrappa P., Bigu J. Passive E-PERM® Radon Flux Monitors For Measuring Undisturbed Radon Flux From The Ground // International Radon Symposium. - Fletcher, North Carolina, 1996. - P. II-1.1 - II-1.6.], выбранный в качестве прототипа, заключающийся в том, что накопительную камеру, в корпусе которой выполнены несколько небольших отверстий для частичного выхода почвенного газа, а внутри расположен предварительно заряженный электретный детектор (тефлоновый диск), устанавливают на поверхность грунта, вдавливая края основания камеры до ограничительного кольца, на период от нескольких часов до месяцев. Почвенный радон поступает внутрь накопительной камеры через диффузионный фильтр, задерживающий торон, установленный в основании накопительной камеры. Внутри камеры радон распадается, происходит накопление продуктов распада и ионизация воздуха. Ионизация воздуха внутри камеры приводит к понижению поверхностного заряда электрета. После экспонирования, через 8 часов, извлекают электретный детектор и измеряют падение напряжения за счет радона стандартным измерителем. Скорость разрядки электретного детектора пропорциональна плотности потока радона.

Радон из накопительной камеры через отверстия в ее корпусе частично поступает во внешнюю атмосферу и внутри накопительной камеры устанавливается полуравновесная концентрация радона, которая изменяется со временем в зависимости от изменения плотности потока радона. Такая накопительная камера позволяет измерять плотность невозмущенного потока радона с поверхности грунта. Накопительную камеру предварительно калибруют для установления коэффициента переводящего показания измерителя в единицы плотности потока радона.

Недостатки способа-прототипа:

- большая длительность одного измерения, которая зависит от толщины тефлонового диска и составляет от 2 суток до 12 месяцев, что не позволяет проводить исследование внутрисуточных вариаций величины плотности потока радона;

- невозможность использования для мониторинга, т.е. проведения непрерывных последовательных измерений без участия оператора;

- необходимость периодически менять диффузионный фильтр в основании накопительной камеры, что приводит к изменению условий измерения.

Задачей изобретения является разработка способа мониторинга плотности невозмущенного потока радона с поверхности грунта.

Поставленная задача решена за счет того, что способ мониторинга плотности невозмущенного потока радона с поверхности грунта, так же как в прототипе, заключается в регистрации альфа-излучения продуктов распада радона, накопленных внутри установленной на поверхность грунта накопительной камеры, в корпусе которой выполнены отверстия для частичного выхода почвенного газа.

Согласно изобретению, предварительно, на месте установки накопительной камеры производят измерение плотности потока радона и торона с помощью радиометра, определяют количество импульсов от торона и альфа-излучающих дочерних продуктов его распада NTn. Затем устанавливают накопительную камеру на поверхность грунта и производят непрерывные последовательные измерения количества импульсов с длительностью одного измерения τ от 60 до 900 с, закрепленным внутри накопительной камеры сцинтилляционным альфа-детектором, чувствительная поверхность которого расположена не менее чем на 0,10 м выше поверхности грунта. Определяют поправочный коэффициент KRn для перевода скорости счета импульсов от радона и альфа-излучающих дочерних продуктов его распада в единицы измерения плотности потока радона. Плотность потока радона определяют из выражения:

где qRn(t) - плотность потока радона с поверхности грунта в момент времени t, Бк м-2 с-1;

KRn - поправочный коэффициент, (Бк м-2 с-1)/(имп. с-1);

NRn+Tn(t) _ суммарное количество зарегистрированных за длительность одного измерения τ импульсов от радона, торона и альфа-излучающих дочерних продуктов их распада в момент времени t, имп.;

NTn - количество импульсов от торона и альфа-излучающих дочерних продуктов его распада за длительность одного измерения τ, имп.;

τ - длительность одного измерения, с.

Известно [Яковлева B.C. Моделирование влияния состояния атмосферы и литосферы на динамику плотности потока радона и торона с поверхности земли // Известия ТПУ. 2010, Т. 317, №2, С. 162-166], что плотность потока торона с поверхности грунта (фиг. 1) почти не изменяется при изменении скорости адвекции (не более 2,6% в широком диапазоне значений 0<υ<10-5 м/с). Поэтому в выражении (2) величина NTn является постоянной для конкретного места мониторинга и не зависит от времени.

Выбор длительности одного измерения τ от 60 до 900 с зависит от технических характеристик выбранного альфа-детектора, а именно эффективности его регистрации, а также от объемной активности радона внутри накопительной камеры, и определяется требованием к неопределенности результата измерения. Ограничение на расстояние чувствительной поверхности детектора от поверхности грунта, равное 0,10 м, позволяет избавиться от "фона", который может быть обусловлен регистрацией альфа-частиц, образующихся при распаде радионуклидов, содержащихся в грунте.

В предлагаемом способе, количество и размер отверстий выбирают исходя из условия, что скорость счета импульсов внутри накопительной камеры должна быть не менее чем в 10 раз выше, чем скорость счета импульсов в открытой атмосфере при том же расстоянии чувствительной поверхности сцинтилляционного альфа-детектора от поверхности грунта. Это позволяет снизить статистическую погрешность (среднее квадратическое отклонение) результата измерений.

Таким образом, предложенный способ мониторинга плотности невозмущенного потока радона с поверхности грунта является простым и достоверным.

На фиг. 1 представлены: сплошной кривой - зависимость плотности потока торона (ППТ) с поверхности грунта от скорости адвекции почвенных газов; штрих-пунктирной кривой - зависимость плотности потока радона (ППР) с поверхности грунта от скорости адвекции почвенных газов.

На фиг. 2 показана блок-схема устройства для мониторинга плотности невозмущенного потока радона с поверхности грунта.

На фиг. 3 представлены результаты измерения плотности потока радона с поверхности грунта.

Для осуществления предлагаемого способа использовали устройство для мониторинга плотности невозмущенного потока радона с поверхности грунта (фиг. 2), содержащее накопительную камеру 1, на верхней поверхности которой выполнено шесть отверстий 2. В верхней части накопительной камеры 1 закреплен сцинтилляционный альфа-детектор 3, чувствительная поверхность которого расположена на 0,10 м выше поверхности грунта. Сцинтилляционный альфа-детектор 3 соединен с блоком усиления сигнала 4 (БУС), к которому подключен счетчик 5 (С), связанный с компьютером 6 (ЭВМ).

Накопительная камера 1 объемом 4,71 л, высотой 0,15 м и площадью основания S=3,14⋅10-2 м2 и с ограничительным кольцом изготовлена из непроницаемого для радона материала – поливинилхлорида. Диаметр отверстий 2 составляет 4 мм.

В качестве сцинтилляционного альфа-детектора 3, блока усиления сигнала 4 (БУС) и счетчика 5 (С) использован блок детектирования БДПА-01 (ООО НТЦ «РАДЭК»), работающий под управлением заводского программного обеспечения на компьютере 6 (ЭВМ).

Для мониторинга плотности невозмущенного потока радона с поверхности грунта выбрали площадку, расположенную около института мониторинга климатических и экологических систем г. Томска.

Предварительно, перед установкой накопительной камеры 1 на поверхности грунта произвели измерения плотности потоков радона и торона с помощью радиометра RTM 2200 (SARAD GmbH, Германия). Измеренные значения плотности потоков радона и торона составили: qRn(t)=15,82 мБк м-2 с-1 и qTn(t)=850 мБк м-2 с-1.

Затем, на месте установки устройства для мониторинга плотности невозмущенного потока родона с поверхности грунта определили количество импульсов NTn от торона и альфа-излучающих дочерних продуктов его распада за длительность одного измерения τ=600 с с помощью спектрометра СЭА-13П1 (ЗАО НПЦ «АСПЕКТ»), в котором использован полупроводниковый альфа-детектор типа D30 (ООО «СНИИП-Плюс»). NTn составило: NTn=7,80 имп.

После этого на грунт установили накопительную камеру 1 таким образом, чтобы чувствительная поверхность сцинтилляционного альфа-детектора 3 была расположена на 0,10 м выше поверхности грунта, при этом края накопительной камеры 1 вдавливали в грунт до ограничительного кольца. Через отверстия 2 радон частично поступал во внешнюю атмосферу, поэтому внутри накопительной камеры 1 в течение мониторинга сохранялась полуравновесная концентрация радона.

Альфа-частица, попадая в слой сцинтиллятора ZnS(Ag) сцинтилляционного альфа-детектора 3, вызывала появление вспышек света, которые в свою очередь, провзаимодействовав с материалом фотокатода этого детектора 3, выбивали из него электроны, которые «умножались» в результате вторичной эмиссии на динодах, в итоге на эквивалентном нагрузочном сопротивлении цепи анода возникал импульс напряжения. Далее сигнал поступал на блок усиления сигнала 4 (БУС), с выхода которого поступал на вход счетчика 5 (С) и передавался в компьютер 6 (ЭВМ).

Таким образом, производили измерение скорости счета импульсов внутри накопительной камеры 1 при длительности одного измерения τ 600 с, удостоверившись, что скорость счета импульсов внутри накопительной камеры 1 удовлетворяет условию, что она должна быть не менее чем в 10 раз выше, чем скорость счета импульсов в открытой атмосфере при том же расстоянии чувствительной поверхности сцинтилляционного альфа-детектора 3 от поверхности грунта.

Измеренное за τ=600 с суммарное количество импульсов NRn+Tn от радона, торона и альфа-излучающих дочерних продуктов их распада составило 48,60 имп. Скорость счета импульсов внутри накопительной камеры 1 составила 48,60 имп./600 с=0,081 имп./с, что в 40,5 раз выше скорости счета импульсов в открытой атмосфере, которая составила 0,002 имп./с.

Определили поправочный коэффициент KRn для перевода скорости счета импульсов от радона и альфа-излучающих дочерних продуктов его распада в единицы измерения плотности потока радона из выражения 1, который составил

Внесли KRn в программу компьютера 6 (ЭВМ) для расчета плотности потока радона.

Установили начальное время отсчета 00:00:00 02.09.2011, установили длительность одного измерения 600 с и при помощи компьютера 6 (ЭВМ) по выражению (1) провели мониторинг плотности невозмущенного потока радона с поверхности грунта. Первое измеренное значение qRn составило 14,20 мБк м-2 с-1. Остальные значения результатов мониторинга ППР приведены на фиг. 3.

Аналогичным образом провели измерения при длительности одного измерения τ=60 с и τ=900 с и получили первые измеренные значения qRn=13,90 мБк м-2 с-1 и qRn=14,24 мБк м-2 с-1 соответственно.


СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
СПОСОБ МОНИТОРИНГА ПЛОТНОСТИ НЕВОЗМУЩЕННОГО ПОТОКА РАДОНА С ПОВЕРХНОСТИ ГРУНТА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 76.
12.01.2017
№217.015.5e02

Способ бесконтактного одностороннего активного теплового неразрушающего контроля

Изобретение относится к способу бесконтактного одностороннего активного теплового неразрушающего контроля материалов и может быть использовано для проведения теплового неразрушающего контроля изделий в авиакосмической, машиностроительной и энергетической промышленности. Способ бесконтактного...
Тип: Изобретение
Номер охранного документа: 0002590347
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ffe

Способ определения кармуазина в соках

Изобретение относится к пищевой промышленности и может быть использовано для определения синтетического пищевого красителя кармуазина (азорубина, Ε 122) в соках. Для этого определяют количество кармуазина в соках методом микроколоночной высокоэффективной жидкостной хроматографии с...
Тип: Изобретение
Номер охранного документа: 0002596796
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73d0

Способ управления процессом механизированной сварки в среде защитных газов с подачей сварочной проволоки

Изобретение относится к механизированной сварке металлов плавящимся электродом в среде защитных газов, а именно к способам получения качественных сварных соединений и сварки во всех пространственных положениях. Сварку осуществляют на переменном токе промышленной частоты с автоматизированной...
Тип: Изобретение
Номер охранного документа: 0002597855
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.742b

Задатчик угла наклона сварочной головки

Изобретение относится к области электродуговой сварки и может быть использовано в конструкциях задатчиков угла наклона сварочной головки. Задатчик содержит корпус, гравитационно-чувствительный элемент, выполненный в виде маятника, преобразователь угла поворота в напряжение, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002597847
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.791d

Способ получения порошков из пантов оленей

Изобретение относится к фармацевтической промышленности, а именно к способу получения порошков из пантов оленей. Способ получения порошка из пантов оленей, в котором куски пантов погружают в жидкий азот между размещенными в жидком азоте высоковольтным и низковольтным электродами, создающими...
Тип: Изобретение
Номер охранного документа: 0002599514
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7f8d

Тепловизионная дефектоскопическая система

Изобретение относится к области бесконтактного неразрушающего контроля и касается тепловизионной дефектоскопической системы. Система включает в себя тепловизионное устройство и светодиодный излучатель для нагрева контролируемого объекта, соединенные с блоком управления, а также два...
Тип: Изобретение
Номер охранного документа: 0002599919
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.842c

Способ синтеза азопродуктов производных 2-нафтола из ароматических аминов в водной среде

Изобретение относится к области органической химии, конкретно к способу синтеза соединений указанной ниже общей формулы, в которой R означает 2-СООН, 4-СООН, 2-NO, 4-NO, 2-МеО, 4-МеО и 4-СН, из ароматических аминов в водной среде. Согласно предлагаемому способу проводят диазотирование и...
Тип: Изобретение
Номер охранного документа: 0002602812
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.85d8

Способ очистки облученных графитовых втулок уран-графитового реактора и устройство для его осуществления

Группа изобретений относится к ядерной физике, к технологии обработки твердых радиоактивных отходов. Способ очистки облученных графитовых втулок уран-графитового реактора включает их нагрев, обработку газом, перевод примесей в газовую фазу, охлаждение углеродного материала. Облученную...
Тип: Изобретение
Номер охранного документа: 0002603015
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9e9a

Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы полые металлические цилиндрики, отверстие их обращено наружу. Диск расположен на изолированном основании....
Тип: Изобретение
Номер охранного документа: 0002606220
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9ef1

Способ обработки полых цилиндров

Изобретение относится к обработке полых цилиндров. Сверлят отверстие спиральным сверлом. Осуществляют дорнование отверстия по схеме сжатия с натягом, равным не менее 5% от его диаметра, путем последовательного проталкивания однозубых дорнов возрастающего диаметра. Удаляют наплывы металла на...
Тип: Изобретение
Номер охранного документа: 0002606145
Дата охранного документа: 10.01.2017
Показаны записи 11-20 из 53.
12.01.2017
№217.015.5e02

Способ бесконтактного одностороннего активного теплового неразрушающего контроля

Изобретение относится к способу бесконтактного одностороннего активного теплового неразрушающего контроля материалов и может быть использовано для проведения теплового неразрушающего контроля изделий в авиакосмической, машиностроительной и энергетической промышленности. Способ бесконтактного...
Тип: Изобретение
Номер охранного документа: 0002590347
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ffe

Способ определения кармуазина в соках

Изобретение относится к пищевой промышленности и может быть использовано для определения синтетического пищевого красителя кармуазина (азорубина, Ε 122) в соках. Для этого определяют количество кармуазина в соках методом микроколоночной высокоэффективной жидкостной хроматографии с...
Тип: Изобретение
Номер охранного документа: 0002596796
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73d0

Способ управления процессом механизированной сварки в среде защитных газов с подачей сварочной проволоки

Изобретение относится к механизированной сварке металлов плавящимся электродом в среде защитных газов, а именно к способам получения качественных сварных соединений и сварки во всех пространственных положениях. Сварку осуществляют на переменном токе промышленной частоты с автоматизированной...
Тип: Изобретение
Номер охранного документа: 0002597855
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.742b

Задатчик угла наклона сварочной головки

Изобретение относится к области электродуговой сварки и может быть использовано в конструкциях задатчиков угла наклона сварочной головки. Задатчик содержит корпус, гравитационно-чувствительный элемент, выполненный в виде маятника, преобразователь угла поворота в напряжение, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002597847
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.791d

Способ получения порошков из пантов оленей

Изобретение относится к фармацевтической промышленности, а именно к способу получения порошков из пантов оленей. Способ получения порошка из пантов оленей, в котором куски пантов погружают в жидкий азот между размещенными в жидком азоте высоковольтным и низковольтным электродами, создающими...
Тип: Изобретение
Номер охранного документа: 0002599514
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7f8d

Тепловизионная дефектоскопическая система

Изобретение относится к области бесконтактного неразрушающего контроля и касается тепловизионной дефектоскопической системы. Система включает в себя тепловизионное устройство и светодиодный излучатель для нагрева контролируемого объекта, соединенные с блоком управления, а также два...
Тип: Изобретение
Номер охранного документа: 0002599919
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.842c

Способ синтеза азопродуктов производных 2-нафтола из ароматических аминов в водной среде

Изобретение относится к области органической химии, конкретно к способу синтеза соединений указанной ниже общей формулы, в которой R означает 2-СООН, 4-СООН, 2-NO, 4-NO, 2-МеО, 4-МеО и 4-СН, из ароматических аминов в водной среде. Согласно предлагаемому способу проводят диазотирование и...
Тип: Изобретение
Номер охранного документа: 0002602812
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.85d8

Способ очистки облученных графитовых втулок уран-графитового реактора и устройство для его осуществления

Группа изобретений относится к ядерной физике, к технологии обработки твердых радиоактивных отходов. Способ очистки облученных графитовых втулок уран-графитового реактора включает их нагрев, обработку газом, перевод примесей в газовую фазу, охлаждение углеродного материала. Облученную...
Тип: Изобретение
Номер охранного документа: 0002603015
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9e9a

Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы полые металлические цилиндрики, отверстие их обращено наружу. Диск расположен на изолированном основании....
Тип: Изобретение
Номер охранного документа: 0002606220
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9ef1

Способ обработки полых цилиндров

Изобретение относится к обработке полых цилиндров. Сверлят отверстие спиральным сверлом. Осуществляют дорнование отверстия по схеме сжатия с натягом, равным не менее 5% от его диаметра, путем последовательного проталкивания однозубых дорнов возрастающего диаметра. Удаляют наплывы металла на...
Тип: Изобретение
Номер охранного документа: 0002606145
Дата охранного документа: 10.01.2017
+ добавить свой РИД