×
25.08.2017
217.015.baf1

Результат интеллектуальной деятельности: Высокопрочная сталь системы Fe-Mn-Al-C, обладающая эффектом TWIP и TRIP

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению конструкционной высокопрочной аустенитной высокомарганцевой стали, обладающей эффектами пластичности, наведенной двойникованием (TWIP) и наведенной превращением (TRIP), используемой в строительстве для изготовления демпфирующих элементов сейсмостойких сооружений. Сталь содержит, вес.%: марганец 9–30, углерод 0,01–0,8, алюминий 0,01–1,0, кремний 0–6, азот 0,015–0,4, водород не более 0,0004, сера не более 0,01, фосфор не более 0,01, железо и неизбежные примеси остальное. Сталь обладает высокими значениями механических свойств при циклических нагрузках. 1 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области металлургии, а именно к получению конструкционной высокопрочной аустенитной высокомарганцевой стали, обладающей эффектом пластичности, наведенной двойникованием, которая может быть использована в строительстве, в том числе - для изготовления демпфирующих элементов, используемых в сейсмостойких сооружений.

Основные требования к таким материалам - высокий уровень механических свойств при циклических нагрузках, которым подвержены демпфирующие элементы сейсмостойких сооружений. Такой высокий уровень механических свойств обеспечивается присутствием в микроструктуре наноразмерных двойников деформации (20-50 нм) в результате эффекта пластичности, наведенной двойникованием. Для наличия эффекта пластичности, наведенной двойникованием, требуется значение энергии дефектов упаковки (ЭДУ) в интервале от 20 до 40 мДж/м2 [Saeed-Akbari A., Mosecker L., Schwedt A. &Bleck W. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Parti. Mechanism Mapsand Work-Hardening Behavior. Metall. Mater. Trans. A 43, 1688-1704 (2011)]. Такие значения достигаются при наличии в составе:

- марганца (Mn)

- углерода (С)

- алюминия (Al)

- кремния (Si)

- азота (N)

Известна деформируемая сталь для облегченных конструкций (RU 2430184, опубл. 27.01.2010) со свойствами TRIP и TWIP, содержащая элементы, вес.%: С=0,05-1,0, Al=0,0-11,0, Si=0,0-6,0, Al+Si>0,5, Mn=9,0-25,0, Н<20 ч./млн, железо и обычно сопутствующие стали элементы остальное, причем в зависимости от состава сплава присутствуют разные фазы, отличающаяся тем, что низкому содержанию марганца соответствует повышенное содержание углерода и повышенному содержанию марганца соответствует низкое содержание углерода, при этом парные значения С-Mn располагаются в системе координат С-Mn приблизительно на одной прямой, соединяющей линии, отстоящей от парных значений С-Mn, находящихся в равновесном состоянии между у фазой (аустенит) и фазой α' (мартенсит).

Недостатком данной стали является отсутствие азота в данной стали, что не позволяет достичь требований по значениям прочности, предъявляемых к современным сталям для демпфирующих элементов сейсмостойких сооружений.

Известна высокопрочная TWIP сталь и способ производства листа из этой стали (US 20100012233, опубл. 21.01.2010). Данная сталь содержит в вес. %: 0,15-0,3 С, 0,01-0,03% Si, 15-25% Mn, 1,2-3,0% Al, Р≤0,02%, 0,001-0,002% S, 4,0-5,0 Ti и остальное железо и неизбежные примеси.

Недостатком данной стали является низкое содержание углерода (до 0,3%), алюминия (1,2-3,0%), кремния (0,01-0,03%) и отсутствие азота, что не позволяет достичь требуемых высоких свойств прочности и пластичности, предъявляемых к современным сталям для демпфирующих элементов сейсмостойких сооружений.

Наиболее близким техническим решением к предложенной стали является аустенитная высокомарганцевая сталь с TWIP-эффектом (ЕР №1067203, опубл. 10.01.2001). Также в патенте описан способ получения полос и листов из данной стали. Изобретение описывает сталь следующего состава (вес.%): C от 0,001 до 1,6%, Mn от 6 до 30%, Ni ≤ 10%, при этом (Mn+Ni) от 16 до 30%; Si ≤ 2,5%, Al ≤ 6%, Cr ≤ 10%; (P+Sn+Sb+As) ≤ 0,2% (S+Se+Te) ≤ 0,5%; (V+Ti+Nb+B+Zr+редкоземельные) ≤ 3%; (Mo+W) ≤ 0,5%, N ≤ 0,3%, Cu ≤ 5%, остальное железо и примеси от плавки. В соответствии с этим способом тонкую полоску толщиной от 1,5 до 10 мм разливают в литейной машине непосредственно из жидкого металла, затем данные полосы выкатываются в холодную с обжатием от 10 до 90% в один или несколько проходов, затем осуществляется рекристаллизационный отжиг полос.

Недостатком данной стали является пониженное содержание кремния (Si≤2,5%), т.к. известно, что добавки кремния повышают стабильность аустенита, а также измельчают зерно, что приводит к повышению прочностных характеристик.

Задачей предлагаемого изобретения является получение высокопрочной высокомарганцевой аустенитной стали, обладающей высоким уровнем механических свойств при циклических нагрузках, которым подвержены демпфирующие элементы сейсмостойких сооружений.

Поставленная задача достигается за счет того, что высокопрочная высокомарганцевая аустенитная сталь содержит марганец (Mn), углерод (С), алюминий (Al), кремний (Si), азот (N), при этом имеет минимальное содержание вредных примесей таких как водород (H), сера (S) и фосфор (P), остальное железо и неизбежные примеси. Ультравысокопрочная сталь системы Fe-Mn-Al-C,обладающая эффектом TWIP и TRIP имеет следующее соотношение компонентов, вес.%:

Марганец (Mn) 9-30
Углерод (С) 0,01–0,8
Алюминий (Al) 0–6
Кремний (Si) 0–6
Азот (N) 0–0,3
Водород (H) не более 0,0004
Сера (S) не более 0,01
Фосфор (P) не более 0,01
Железо (Fe) и неизбежные примеси остальное

Между компонентами выполняются следующие соотношения:

20<27,06*С+0,576*Mn+2,26*Al-2*Si+73*N<40,

где C, N, Mn, Si, N содержание химических элементов, вес.%.

Технический результат заключается в получении высокопрочной высокомарганцевой аустенитной стали, обладающей высоким уровнем механических свойств при циклических нагрузках, которым подвержены демпфирующие элементы сейсмостойких сооружений.

Введение в сталь марганца в количестве 9–30% обеспечивает нужное значение энергии дефекта упаковки. При этом введение марганца в количествах более 30% может привести к образованию хрупкой бета-фазы, что отрицательно скажется на механических свойствах стали. Введение углерода в сталь в количествах 0,01–0,8% позволяет упрочнить ее по механизму твердорастворного упрочнения. При этом углерод и марганец образуют октаэдрические кластеры, что приводит к дополнительному упрочнению по механизму DSA (dynamic strain aging–динамическое старение под напряжением). Добавление углерода в количествах больших 0,8 вес.% приводит к образованию карбидов, пагубно влияющих на пластичность стали. Алюминий добавляется в сталь для подавления эффекта отложенного разрушения [Ryu J.H., Kim S.K., Lee C.S., Suh D.-W. &Bhadeshia, H. K. D. H. Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe-Mn-C steel. Proc. R. Soc. A Math. Phys. Eng. Sci. 469, pp. 1–14 (2012)]. Кроме того, алюминий повышает высокотемпературную пластичность сталей, что облегчает горячую прокатку. Добавки кремния (до 6 вес.%) повышают стабильность аустенита, а также измельчают зерно, что приводит к повышению прочностных характеристик. Содержание азота (0,3–0,4%) обусловлено его предельной растворимостью в твердом растворе, превышение содержания азота может привести к образованию пористости из-за образования газообразного азота при выплавке и сварке. Особое внимание следует уделять пониженному содержанию водорода, т.к. присутствие водорода может приводить к охрупчиванию и отложенному разрушению высокопрочных высокомарганцевых аустенитных сталей [Ryu J.H., Kim S.K., Lee C.S., Suh D.-W. &Bhadeshia H. K. D. H. Effect of aluminium on hydrogen-inducedf racture behaviour in austenitic Fe-Mn-C steel. Proc. R. Soc. A Math. Phys. Eng. Sci. 469, pp. 1–14 (2012)]. Высокие значения механических свойств при циклических нагрузках достигаются за счет присутствия в химическом составе элементов внедрения: углерода и азота, а также микроструктурного дизайна: присутствия наноразмерных двойников, появляющихся при деформации в результате эффекта пластичности, наведенной двойникованием [Kusakin P., Belyakov A., Haase C., Kaibyshev R.&Molodov D.A. Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling. Mater. Sci. Eng. A 617, 52–60 (2014)].

Предложенный способ позволяет получить высокопрочную высокомарганцевую аустенитную сталь с эффектом пластичности, наведенной двойникованием, с высокими значениями механических свойств при циклических нагрузках. Более высокое содержание кремния по сравнению с прототипом обеспечивает более мелкое зерно и соответственно более высокие прочностные свойства.

Примеры осуществления.

Пример 1. Были отлиты два сплава предлагаемого химического состава. Стали предложенного химического состава были отлиты в индукционной печи и подвергнуты электрошлаковому переплаву. После чего стали были подвергнуты гомогенизационному отжигу и ковке. Химический состав предлагаемого сплава и прототипа представлены в таблице 1 на Фиг.1.

Предлагаемые сплавы выплавляли в 50-кг индукционной печи и разливали в изложницы для слитков массой 25 кг. Слитки ковали и прокатывали в лист высотой 30 мм. В результате, стали предлагаемых составов обладают повышенной стойкостью к усталостному разрушению: сталь предлагаемого состава 2 имеет усталостную выносливость 460 MПа, а сталь предлагаемого состава 3 имеет усталостную выносливость 475 MПа на базе 105 циклов, соответственно.

Пример 2. Был отлит сплав предлагаемого химического состава. Сталь предложенного химического состава была отлита в индукционной печи и подвергнута электрошлаковому переплаву. После чего сталь была подвергнута гомогенизационному отжигу и ковке. Химический состав предлагаемого сплава и прототипа представлены в таблице 2 на Фиг. 2.

Сталь предлагаемого химического состава выплавляли в 50-кг индукционной печи и разливали в изложницы для слитков массой 25 кг. Слитки ковали и прокатывали в лист высотой 30 мм. В результате, сталь предлагаемого состава обладает повышенной стойкостью к усталостному разрушению: усталостная выносливость стали составляет 470 MПа на базе 105 циклов.


Высокопрочная сталь системы Fe-Mn-Al-C, обладающая эффектом TWIP и TRIP
Источник поступления информации: Роспатент

Показаны записи 31-40 из 94.
13.01.2017
№217.015.7581

Способ получения биологически активных концентратов антоцианов с высокой антиоксидантной активностью из лепестков красных роз

Изобретение относится к пищевой промышленности, в частности к получению биологически активных концентратов антоцианов с высокой антиоксидантной активностью из лепестков роз красного цвета. Лепестки роз без предварительной экстракции непосредственно добавляются в горячий сахарный сироп, с...
Тип: Изобретение
Номер охранного документа: 0002598545
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.75a0

Способ получения нанокапсул адаптогенов в альгинате натрия

Изобретение относится к способу получения нанокапсул адаптогенов в альгинате натрия, в котором действующее вещество при перемешивании диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472 в качестве поверхностно-активного вещества, затем добавляют осадитель, а...
Тип: Изобретение
Номер охранного документа: 0002598748
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7877

Способ получения нанокапсулированного иодида калия в альгинате натрия

Изобретение относится к области нанотехнологии и может быть использовано в фармацевтике. Способ получения нанокапсулированного иодида калия в альгинате натрия заключается в следующем: иодид калия при перемешивании со скоростью 1200 об/мин добавляют к раствору альгината натрия в петролейном...
Тип: Изобретение
Номер охранного документа: 0002599006
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.876a

Способ оценки биоинертности медицинских имплантов in vivo

Изобретение относится к медицине, в частности к экспериментальной хирургии, и может быть использовано для оценки биоинертности материалов для изготовления медицинских имплантов. Для этого имплантируют в печень и почки крыс по два образца исследуемого материала с последующим послойным ушиванием...
Тип: Изобретение
Номер охранного документа: 0002603717
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87f5

Замещенные пиразинопиримидиноны как блокаторы trpa1 каналов, фармацевтическая композиция, способы их получения и применения

Изобретение относится к новым замещенным пиразинопиримидинонам общей формулы I или их рацемическим смесям, индивидуальным оптическим изомерам и фармацевтически приемлемым солям, которые обладают свойствами блокаторов TRPA1 каналов. В формуле I R1=H, (C-C) алкил; R2=H, (C-C) алкил; R3=H, (C-C)...
Тип: Изобретение
Номер охранного документа: 0002603770
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8ec7

Способ получения гранулированного нанокристаллического гидроксилапатита

Изобретение относится к фармацевтической промышленности, а именно к способу получения гранулированного нанокристаллического гидроксилапатита (ГАП). Способ получения гранулированного нанокристаллического гидроксилапатита включает синтез гидроксилапатита в насыщенном растворе гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002605296
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a025

Способ минимизации относительной деформации усадки твердеющего закладочного массива

Изобретение относится к горной промышленности и может использоваться при разработке месторождений полезных ископаемых с твердеющей закладкой выработанного пространства. Технический результат предлагаемого изобретения заключается в повышении устойчивости искусственной кровли, ограничении...
Тип: Изобретение
Номер охранного документа: 0002606738
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a093

Способ термомеханической обработки литых (γ+α2)- интерметаллидных сплавов на основе алюминида титана γ-tial

Изобретение относится к области металлургии, а именно к обработке давлением и может быть использовано для получения из этих материалов заготовок, полуфабрикатов и изделий с регламентированной структурой, используемых в аэрокосмической и автомобильной технике. Способ термомеханической обработки...
Тип: Изобретение
Номер охранного документа: 0002606685
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a0af

Способ упрочнения твердеющего закладочного массива

Изобретение относится к горной промышленности и может использоваться при разработке месторождений полезных ископаемых с закладкой выработанного пространства. Технический результат - обеспечение безопасных условий горных работ при увеличении прочности закладки на растяжение. В способе упрочнения...
Тип: Изобретение
Номер охранного документа: 0002606729
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a185

Способ получения нанокапсул сухого экстракта шпината

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе. Способ включает диспергирование сухого экстракта шпината в раствор натрий карбоксиметилцеллюлозы в бензоле в соотношении 1:1-3 в присутствии E472c...
Тип: Изобретение
Номер охранного документа: 0002606854
Дата охранного документа: 10.01.2017
Показаны записи 31-40 из 98.
13.01.2017
№217.015.75a0

Способ получения нанокапсул адаптогенов в альгинате натрия

Изобретение относится к способу получения нанокапсул адаптогенов в альгинате натрия, в котором действующее вещество при перемешивании диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472 в качестве поверхностно-активного вещества, затем добавляют осадитель, а...
Тип: Изобретение
Номер охранного документа: 0002598748
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7877

Способ получения нанокапсулированного иодида калия в альгинате натрия

Изобретение относится к области нанотехнологии и может быть использовано в фармацевтике. Способ получения нанокапсулированного иодида калия в альгинате натрия заключается в следующем: иодид калия при перемешивании со скоростью 1200 об/мин добавляют к раствору альгината натрия в петролейном...
Тип: Изобретение
Номер охранного документа: 0002599006
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.876a

Способ оценки биоинертности медицинских имплантов in vivo

Изобретение относится к медицине, в частности к экспериментальной хирургии, и может быть использовано для оценки биоинертности материалов для изготовления медицинских имплантов. Для этого имплантируют в печень и почки крыс по два образца исследуемого материала с последующим послойным ушиванием...
Тип: Изобретение
Номер охранного документа: 0002603717
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87f5

Замещенные пиразинопиримидиноны как блокаторы trpa1 каналов, фармацевтическая композиция, способы их получения и применения

Изобретение относится к новым замещенным пиразинопиримидинонам общей формулы I или их рацемическим смесям, индивидуальным оптическим изомерам и фармацевтически приемлемым солям, которые обладают свойствами блокаторов TRPA1 каналов. В формуле I R1=H, (C-C) алкил; R2=H, (C-C) алкил; R3=H, (C-C)...
Тип: Изобретение
Номер охранного документа: 0002603770
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8ec7

Способ получения гранулированного нанокристаллического гидроксилапатита

Изобретение относится к фармацевтической промышленности, а именно к способу получения гранулированного нанокристаллического гидроксилапатита (ГАП). Способ получения гранулированного нанокристаллического гидроксилапатита включает синтез гидроксилапатита в насыщенном растворе гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002605296
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a025

Способ минимизации относительной деформации усадки твердеющего закладочного массива

Изобретение относится к горной промышленности и может использоваться при разработке месторождений полезных ископаемых с твердеющей закладкой выработанного пространства. Технический результат предлагаемого изобретения заключается в повышении устойчивости искусственной кровли, ограничении...
Тип: Изобретение
Номер охранного документа: 0002606738
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a093

Способ термомеханической обработки литых (γ+α2)- интерметаллидных сплавов на основе алюминида титана γ-tial

Изобретение относится к области металлургии, а именно к обработке давлением и может быть использовано для получения из этих материалов заготовок, полуфабрикатов и изделий с регламентированной структурой, используемых в аэрокосмической и автомобильной технике. Способ термомеханической обработки...
Тип: Изобретение
Номер охранного документа: 0002606685
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a0af

Способ упрочнения твердеющего закладочного массива

Изобретение относится к горной промышленности и может использоваться при разработке месторождений полезных ископаемых с закладкой выработанного пространства. Технический результат - обеспечение безопасных условий горных работ при увеличении прочности закладки на растяжение. В способе упрочнения...
Тип: Изобретение
Номер охранного документа: 0002606729
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a185

Способ получения нанокапсул сухого экстракта шпината

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе. Способ включает диспергирование сухого экстракта шпината в раствор натрий карбоксиметилцеллюлозы в бензоле в соотношении 1:1-3 в присутствии E472c...
Тип: Изобретение
Номер охранного документа: 0002606854
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a6a2

Хладостойкая аустенитная высокопрочная сталь

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионностойкой и хладостойкой аустенитной высокопрочной стали, используемой в машиностроении, в частности, для изготовления высокопрочных конструкций, работающих в условиях пониженных климатических температур,...
Тип: Изобретение
Номер охранного документа: 0002608251
Дата охранного документа: 17.01.2017
+ добавить свой РИД