×
25.08.2017
217.015.baf1

Результат интеллектуальной деятельности: Высокопрочная сталь системы Fe-Mn-Al-C, обладающая эффектом TWIP и TRIP

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению конструкционной высокопрочной аустенитной высокомарганцевой стали, обладающей эффектами пластичности, наведенной двойникованием (TWIP) и наведенной превращением (TRIP), используемой в строительстве для изготовления демпфирующих элементов сейсмостойких сооружений. Сталь содержит, вес.%: марганец 9–30, углерод 0,01–0,8, алюминий 0,01–1,0, кремний 0–6, азот 0,015–0,4, водород не более 0,0004, сера не более 0,01, фосфор не более 0,01, железо и неизбежные примеси остальное. Сталь обладает высокими значениями механических свойств при циклических нагрузках. 1 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области металлургии, а именно к получению конструкционной высокопрочной аустенитной высокомарганцевой стали, обладающей эффектом пластичности, наведенной двойникованием, которая может быть использована в строительстве, в том числе - для изготовления демпфирующих элементов, используемых в сейсмостойких сооружений.

Основные требования к таким материалам - высокий уровень механических свойств при циклических нагрузках, которым подвержены демпфирующие элементы сейсмостойких сооружений. Такой высокий уровень механических свойств обеспечивается присутствием в микроструктуре наноразмерных двойников деформации (20-50 нм) в результате эффекта пластичности, наведенной двойникованием. Для наличия эффекта пластичности, наведенной двойникованием, требуется значение энергии дефектов упаковки (ЭДУ) в интервале от 20 до 40 мДж/м2 [Saeed-Akbari A., Mosecker L., Schwedt A. &Bleck W. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Parti. Mechanism Mapsand Work-Hardening Behavior. Metall. Mater. Trans. A 43, 1688-1704 (2011)]. Такие значения достигаются при наличии в составе:

- марганца (Mn)

- углерода (С)

- алюминия (Al)

- кремния (Si)

- азота (N)

Известна деформируемая сталь для облегченных конструкций (RU 2430184, опубл. 27.01.2010) со свойствами TRIP и TWIP, содержащая элементы, вес.%: С=0,05-1,0, Al=0,0-11,0, Si=0,0-6,0, Al+Si>0,5, Mn=9,0-25,0, Н<20 ч./млн, железо и обычно сопутствующие стали элементы остальное, причем в зависимости от состава сплава присутствуют разные фазы, отличающаяся тем, что низкому содержанию марганца соответствует повышенное содержание углерода и повышенному содержанию марганца соответствует низкое содержание углерода, при этом парные значения С-Mn располагаются в системе координат С-Mn приблизительно на одной прямой, соединяющей линии, отстоящей от парных значений С-Mn, находящихся в равновесном состоянии между у фазой (аустенит) и фазой α' (мартенсит).

Недостатком данной стали является отсутствие азота в данной стали, что не позволяет достичь требований по значениям прочности, предъявляемых к современным сталям для демпфирующих элементов сейсмостойких сооружений.

Известна высокопрочная TWIP сталь и способ производства листа из этой стали (US 20100012233, опубл. 21.01.2010). Данная сталь содержит в вес. %: 0,15-0,3 С, 0,01-0,03% Si, 15-25% Mn, 1,2-3,0% Al, Р≤0,02%, 0,001-0,002% S, 4,0-5,0 Ti и остальное железо и неизбежные примеси.

Недостатком данной стали является низкое содержание углерода (до 0,3%), алюминия (1,2-3,0%), кремния (0,01-0,03%) и отсутствие азота, что не позволяет достичь требуемых высоких свойств прочности и пластичности, предъявляемых к современным сталям для демпфирующих элементов сейсмостойких сооружений.

Наиболее близким техническим решением к предложенной стали является аустенитная высокомарганцевая сталь с TWIP-эффектом (ЕР №1067203, опубл. 10.01.2001). Также в патенте описан способ получения полос и листов из данной стали. Изобретение описывает сталь следующего состава (вес.%): C от 0,001 до 1,6%, Mn от 6 до 30%, Ni ≤ 10%, при этом (Mn+Ni) от 16 до 30%; Si ≤ 2,5%, Al ≤ 6%, Cr ≤ 10%; (P+Sn+Sb+As) ≤ 0,2% (S+Se+Te) ≤ 0,5%; (V+Ti+Nb+B+Zr+редкоземельные) ≤ 3%; (Mo+W) ≤ 0,5%, N ≤ 0,3%, Cu ≤ 5%, остальное железо и примеси от плавки. В соответствии с этим способом тонкую полоску толщиной от 1,5 до 10 мм разливают в литейной машине непосредственно из жидкого металла, затем данные полосы выкатываются в холодную с обжатием от 10 до 90% в один или несколько проходов, затем осуществляется рекристаллизационный отжиг полос.

Недостатком данной стали является пониженное содержание кремния (Si≤2,5%), т.к. известно, что добавки кремния повышают стабильность аустенита, а также измельчают зерно, что приводит к повышению прочностных характеристик.

Задачей предлагаемого изобретения является получение высокопрочной высокомарганцевой аустенитной стали, обладающей высоким уровнем механических свойств при циклических нагрузках, которым подвержены демпфирующие элементы сейсмостойких сооружений.

Поставленная задача достигается за счет того, что высокопрочная высокомарганцевая аустенитная сталь содержит марганец (Mn), углерод (С), алюминий (Al), кремний (Si), азот (N), при этом имеет минимальное содержание вредных примесей таких как водород (H), сера (S) и фосфор (P), остальное железо и неизбежные примеси. Ультравысокопрочная сталь системы Fe-Mn-Al-C,обладающая эффектом TWIP и TRIP имеет следующее соотношение компонентов, вес.%:

Марганец (Mn) 9-30
Углерод (С) 0,01–0,8
Алюминий (Al) 0–6
Кремний (Si) 0–6
Азот (N) 0–0,3
Водород (H) не более 0,0004
Сера (S) не более 0,01
Фосфор (P) не более 0,01
Железо (Fe) и неизбежные примеси остальное

Между компонентами выполняются следующие соотношения:

20<27,06*С+0,576*Mn+2,26*Al-2*Si+73*N<40,

где C, N, Mn, Si, N содержание химических элементов, вес.%.

Технический результат заключается в получении высокопрочной высокомарганцевой аустенитной стали, обладающей высоким уровнем механических свойств при циклических нагрузках, которым подвержены демпфирующие элементы сейсмостойких сооружений.

Введение в сталь марганца в количестве 9–30% обеспечивает нужное значение энергии дефекта упаковки. При этом введение марганца в количествах более 30% может привести к образованию хрупкой бета-фазы, что отрицательно скажется на механических свойствах стали. Введение углерода в сталь в количествах 0,01–0,8% позволяет упрочнить ее по механизму твердорастворного упрочнения. При этом углерод и марганец образуют октаэдрические кластеры, что приводит к дополнительному упрочнению по механизму DSA (dynamic strain aging–динамическое старение под напряжением). Добавление углерода в количествах больших 0,8 вес.% приводит к образованию карбидов, пагубно влияющих на пластичность стали. Алюминий добавляется в сталь для подавления эффекта отложенного разрушения [Ryu J.H., Kim S.K., Lee C.S., Suh D.-W. &Bhadeshia, H. K. D. H. Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe-Mn-C steel. Proc. R. Soc. A Math. Phys. Eng. Sci. 469, pp. 1–14 (2012)]. Кроме того, алюминий повышает высокотемпературную пластичность сталей, что облегчает горячую прокатку. Добавки кремния (до 6 вес.%) повышают стабильность аустенита, а также измельчают зерно, что приводит к повышению прочностных характеристик. Содержание азота (0,3–0,4%) обусловлено его предельной растворимостью в твердом растворе, превышение содержания азота может привести к образованию пористости из-за образования газообразного азота при выплавке и сварке. Особое внимание следует уделять пониженному содержанию водорода, т.к. присутствие водорода может приводить к охрупчиванию и отложенному разрушению высокопрочных высокомарганцевых аустенитных сталей [Ryu J.H., Kim S.K., Lee C.S., Suh D.-W. &Bhadeshia H. K. D. H. Effect of aluminium on hydrogen-inducedf racture behaviour in austenitic Fe-Mn-C steel. Proc. R. Soc. A Math. Phys. Eng. Sci. 469, pp. 1–14 (2012)]. Высокие значения механических свойств при циклических нагрузках достигаются за счет присутствия в химическом составе элементов внедрения: углерода и азота, а также микроструктурного дизайна: присутствия наноразмерных двойников, появляющихся при деформации в результате эффекта пластичности, наведенной двойникованием [Kusakin P., Belyakov A., Haase C., Kaibyshev R.&Molodov D.A. Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling. Mater. Sci. Eng. A 617, 52–60 (2014)].

Предложенный способ позволяет получить высокопрочную высокомарганцевую аустенитную сталь с эффектом пластичности, наведенной двойникованием, с высокими значениями механических свойств при циклических нагрузках. Более высокое содержание кремния по сравнению с прототипом обеспечивает более мелкое зерно и соответственно более высокие прочностные свойства.

Примеры осуществления.

Пример 1. Были отлиты два сплава предлагаемого химического состава. Стали предложенного химического состава были отлиты в индукционной печи и подвергнуты электрошлаковому переплаву. После чего стали были подвергнуты гомогенизационному отжигу и ковке. Химический состав предлагаемого сплава и прототипа представлены в таблице 1 на Фиг.1.

Предлагаемые сплавы выплавляли в 50-кг индукционной печи и разливали в изложницы для слитков массой 25 кг. Слитки ковали и прокатывали в лист высотой 30 мм. В результате, стали предлагаемых составов обладают повышенной стойкостью к усталостному разрушению: сталь предлагаемого состава 2 имеет усталостную выносливость 460 MПа, а сталь предлагаемого состава 3 имеет усталостную выносливость 475 MПа на базе 105 циклов, соответственно.

Пример 2. Был отлит сплав предлагаемого химического состава. Сталь предложенного химического состава была отлита в индукционной печи и подвергнута электрошлаковому переплаву. После чего сталь была подвергнута гомогенизационному отжигу и ковке. Химический состав предлагаемого сплава и прототипа представлены в таблице 2 на Фиг. 2.

Сталь предлагаемого химического состава выплавляли в 50-кг индукционной печи и разливали в изложницы для слитков массой 25 кг. Слитки ковали и прокатывали в лист высотой 30 мм. В результате, сталь предлагаемого состава обладает повышенной стойкостью к усталостному разрушению: усталостная выносливость стали составляет 470 MПа на базе 105 циклов.


Высокопрочная сталь системы Fe-Mn-Al-C, обладающая эффектом TWIP и TRIP
Источник поступления информации: Роспатент

Показаны записи 91-94 из 94.
21.05.2023
№223.018.6aef

Способ получения основы синтетических моющих средств

Изобретение относится к получению линейных алкилбензолсульфонатов. Способ получения включает алкилирование бензола внутренними олефинами в присутствии фтористого водорода, последующее сульфирование алкилбензолов газообразным SO и нейтрализацию полученных алкилбензолсульфокислот щелочью, причем...
Тип: Изобретение
Номер охранного документа: 0002795626
Дата охранного документа: 05.05.2023
22.05.2023
№223.018.6b49

Способ прогнозирования риска развития рака молочной железы у женщин без ожирения

Изобретение относится к медицине, а именно к клинической онкологии, медицинской генетике, молекулярной диагностике, и может быть использовано для прогнозирования риска развития рака молочной железы (РМЖ) у женщин без ожирения русской национальности. Из периферической венозной крови выделяют...
Тип: Изобретение
Номер охранного документа: 0002795726
Дата охранного документа: 11.05.2023
22.05.2023
№223.018.6b92

Способ прогнозирования риска развития люминального подтипа рака молочной железы

Изобретение относится к медицине, а именно к клинической онкологии, медицинской генетике, молекулярной диагностике, и может быть использовано для прогнозирования риска развития люминального подтипа рака молочной железы (РМЖ) у женщин русской национальности. Из периферической венозной крови...
Тип: Изобретение
Номер охранного документа: 0002795720
Дата охранного документа: 11.05.2023
26.05.2023
№223.018.7057

Способ создания ориентированных структур на основе сегнетоэлектрического порошка

Изобретение относится к способам создания ориентированных структур из порошковых сегнетоэлектриков, которые могут быть использованы в различных устройствах регистрации и управления электромагнитным излучением. Сущность: на первый электрод насыпают сегнетоэлектрический порошок, второй электрод...
Тип: Изобретение
Номер охранного документа: 0002796209
Дата охранного документа: 17.05.2023
Показаны записи 91-98 из 98.
03.08.2019
№219.017.bc6d

Способ обработки жаропрочной мартенситной стали

Изобретение относится к области металлургии, а именно к технологии обработки жаропрочных мартенситных сплавов, применяемых в энергетической промышленности в качестве конструкционных материалов для производства котлов, роторов и другого оборудования тепловых электростанций нового поколения,...
Тип: Изобретение
Номер охранного документа: 0002696302
Дата охранного документа: 01.08.2019
08.08.2019
№219.017.bd14

Способ получения листов высокомарганцевой стали с улучшенными механическими свойствами

Изобретение относится к области металлургии, в частности к деформационно-термической обработке металлов, а точнее к способу получения листов из аустенитных высокомарганцевых TWIP сталей с энергией дефекта упаковки от 20 до 50 мДж/м, и может быть использовано в автомобилестроении для...
Тип: Изобретение
Номер охранного документа: 0002696789
Дата охранного документа: 06.08.2019
12.08.2019
№219.017.be60

Способ получения катанки из термостойкого алюминиевого сплава

Изобретение относится к области металлургии, а именно к способам получения изделий электротехнического назначения на основе алюминия, применяемых для изготовления электротехнической катанки и проводов высоковольтных линий электропередач. Способ включает приготовление расплава, содержащего,...
Тип: Изобретение
Номер охранного документа: 0002696794
Дата охранного документа: 06.08.2019
12.08.2019
№219.017.be8c

Алюминиево-циркониевый сплав

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, используемым в качестве электротехнической катанки и проводов для линий электропередач. Алюминиево-циркониевый сплав содержит, мас.%: 0,22-0,4 Zr, 0,2-0,4 Si, 0,62-0,8 Fe, алюминий – остальное, при соотношении...
Тип: Изобретение
Номер охранного документа: 0002696797
Дата охранного документа: 06.08.2019
26.11.2019
№219.017.e6a9

Способ термомеханической обработки полуфабрикатов из термоупрочняемых al-cu-mg-ag сплавов

Изобретение относится к области металлургии, а именно к термомеханической обработке полуфабрикатов из термоупрочняемых Al-Cu-Mg-Ag сплавов для улучшения механических свойств и показателей жаропрочности готовых изделий, применяемых в современных газотурбинных двигателях наземного и авиационного...
Тип: Изобретение
Номер охранного документа: 0002707114
Дата охранного документа: 22.11.2019
24.12.2019
№219.017.f134

Способ получения сварных соединений термоупрочняемых алюминиевых сплавов с высоким пределом выносливости

Изобретение может быть использовано при сварке трением с перемешиванием термоупрочнямых алюминиевых сплавов, в частности 2ххх, 6ххх, 7ххх. После досварочной термической обработки Т6 осуществляют сварку трением с перемешиванием при частоте вращения инструмента от 1000 до 2500 об/мин и скорости...
Тип: Изобретение
Номер охранного документа: 0002709908
Дата охранного документа: 23.12.2019
24.12.2019
№219.017.f1c0

Низколегированный медный сплав

Изобретение относится к области металлургии, в частности к медным сплавам, используемым в качестве материала контактной сети высокоскоростного железнодорожного транспорта. Низколегированный медный сплав содержит олово, цинк, медь и примеси, в том числе свинец, железо и алюминий, при следующем...
Тип: Изобретение
Номер охранного документа: 0002709909
Дата охранного документа: 23.12.2019
23.04.2023
№223.018.518d

Способ получения катаных полуфабрикатов из аустенитной коррозионностойкой стали

Изобретение относится к области металлургии, а именно к получению катаных листовых полуфабрикатов из аустенитной коррозионностойкой стали в виде стали типа 18-8 или стали типа 18-10, и может быть использовано для изготовления элементов строительных конструкций. Проводят горячую ковку стальных...
Тип: Изобретение
Номер охранного документа: 0002735777
Дата охранного документа: 09.11.2020
+ добавить свой РИД