×
25.08.2017
217.015.b809

Результат интеллектуальной деятельности: КОМПЬЮТЕРНАЯ СИСТЕМА УПРАВЛЕНИЯ СТРОИТЕЛЬНЫМ КОМПЛЕКСОМ

Вид РИД

Изобретение

Аннотация: Компьютерная система управления строительным комплексом содержит диспетчерский геодезический пункт с приемником GPS-сигналов и антенной, передающую радиостанцию, дуплексную радиостанцию. На каждом погрузчике и трейлере установлена дуплексная радиостанция, два приемника с антенной. Между каждым погрузчиком и трейлером установлена пейджинговая и двухсторонняя радиосвязь. Каждый строительный модуль и блок снабжен радиочастотной меткой в виде пьезокристалла с нанесенным на его поверхность алюминиевым тонкопленочным встречно-штыревым преобразователем поверхностных акустических волн и набором отражателей. На поверхности пьезокристалла установлена микрополосковая приемопередающая антенна. Обеспечивается помехоустойчивость и достоверность обмена аналоговой и дискретной информацией между диспетчерским геодезическим пунктом и погрузчиками (трейлерами). 7 ил.

Изобретение относится к автоматизированным системам для управления строительным комплексом, включающим геодезический диспетчерский пункт, домокомбинат для производства строительных модулей, блоков и материалов, строительную площадку для возведения многоэтажных домов и сооружений и систему приема и передачи информации и может быть использовано для принятия оперативных и обоснованных решений на всех уровнях управления и контроля за погрузочно-разгрузочными и транспортно-складскими процессами с использованием компьютерной техники и радиочастотных меток.

Известны автоматизированные системы для управления и контроля различными производственными процессами (авт. свид. СССР № 830304, 911464, 930254, 1233105, 1276594, 1780080; патенты РФ № 2094853, 2.113012, 2158936, 2172524, 2343100, 2435228; патент США №5574648; патент Франции №2438877; патент ЕР №1843161 и другие).

Из известных систем и устройств наиболее близкой к предлагаемой является «Компьютерная система управления портовым контейнерным терминалом» (патент РФ №2435228, G08G 1/123, 2010), которая и выбрана в качестве прототипа.

Приемники дуплексных радиостанций, размещенных на геодезическом диспетчерском пункте и на каждом погрузчике (трейлере), построены по супергетеродинной схеме, в них одно и то же значение второй промежуточной частоты ωпр2 может быть получено в результате приема сигналов на четырех частотах ω1, ω2, ωз1 и ωз2, т.е.

ωпр21г1, ωпр2г22,

ωпр2г1з1, ωпр2з2г2.

Следовательно, если частоты настройки ω1 и ω2 принять за основные каналы приема, то наряду с ними будут иметь место зеркальные каналы приема, частоты ωз1 и ωз2 которых отличаются от частот ω1 и ω2 на ωпр2 и расположены симметрично (зеркально) относительно частот гетеродинов ωг1 и ωг2 (фиг. 3). Преобразование по зеркальным каналам приема происходит с тем же коэффициентом преобразования Кпр, что и по основным каналам. Поэтому они наиболее существенно влияют на избирательность и помехоустойчивость приемников.

Кроме зеркальных существуют и другие дополнительные (комбинационные) каналы приема. В общем виде любой комбинационный канал приема имеет место при выполнении условий:

где ωkikj - частоты i-го и j-го комбинационных каналов приема;

m, n, i, j - целые положительные числа.

Наиболее вредными комбинационными каналами приема являются каналы, образующиеся при взаимодействии первой гармоники частоты сигналов с гармониками частот гетеродинов малого порядка (второй, третьей), так как чувствительность приемников по этим каналам близка к чувствительности основных каналов приема. Так, четырем комбинационным каналам при m=1 и n=2 соответствуют частоты:

ωк1=2ωг1пр2, ωк2=2ωг1пр2,

ωк3=2ωг2пр2, ωк4=2ωг2пр2.

Наличие ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам, приводит к снижению помехоустойчивости приемников и достоверности обмена аналоговой и дискретной информацией между геодезическим диспетчерским пунктом и погрузчиками (трейлерами).

Технической задачей изобретения является повышение помехоустойчивости приемников и достоверности обмена аналоговой и дискретной информацией между геодезическим диспетчерским пунктом и погрузчиками (трейлерами) путем подавления ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам.

Поставленная задача решается тем, что компьютерная система управления строительным комплексом, содержащая диспетчерский геодезический пункт, на котором установлены приемник GPS-сигналов с антенной, предназначенный для приема навигационного сигнала, используемого для вычисления дифференциальных поправок, передающая радиостанция, предназначенная для передачи дифференциальных поправок на погрузчики и трейлеры, и дуплексная радиостанция, на каждом погрузчике установлена дуплексная радиостанция, первый приемник с антенной, предназначенный для получения дифференциальных поправок с диспетчерского пункта, и второй приемник с антенной, предназначенный для приема навигационного GPS-сигнала, используемого для вычисления дифференциальных поправок, при этом между диспетчерским геодезическим пунктом и каждым погрузчиком и трейлером установлены пейджинговая и двухсторонняя радиосвязи непосредственно и/или через систему приема и передачи информации, дуплексная радиостанция, размещенная на диспетчерском геодезическом пункте, содержит последовательно включенные компьютер, первый задающий генератор, первый фазовый манипулятор, второй вход которого через источник дискретного сообщения соединен с компьютером, первый амплитудный модулятор, второй вход которого через источник аналогового сообщения соединен с компьютером, первый смеситель, второй вход которого соединен с выходом первого гетеродина, первый усилитель первой промежуточной частоты, первый усилитель мощности, первый дуплексер, вход-выход которого связан с первой приемопередающей антенной, второй усилитель мощности, второй смеситель, второй вход которого соединен с выходом второго гетеродина и первый усилитель второй промежуточной частоты, последовательно включенные первый усилитель-ограничитель, первый синхронный детектор, компьютер и блок регистрации, последовательно подключенные к выходу первого усилителя-ограничителя первый перемножитель, второй вход которого соединен с выходом второго гетеродина, первый полосовой фильтр и первый фазовый детектор, второй вход которого соединен с выходом первого гетеродина, а выход подключен к компьютеру, передающая радиостанция содержит последовательно включенные второй задающий генератор, второй фазовый манипулятор, второй вход которого соединен с прибором дифференциальных поправок, подключенным к выходу приемника GPS-сигналов с антенной, третий усилитель мощности и передающую антенну, дуплексная радиостанция, размещенная на каждом погрузчике и трейлере, содержит последовательно включенные микропроцессор, к которому подключены датчик номера погрузчика или трейлера и датчик погрузки-разгрузки погрузчика или трейлера, третий задающий генератор, третий фазовый манипулятор, второй амплитудный модулятор, второй вход которого соединен с микропроцессором, третий смеситель, второй вход которого соединен с выходом третьего гетеродина, второй усилитель второй промежуточной частоты, четвертый усилитель мощности, второй дуплексер, вход-выход которого связан со второй приемопередающей антенной, пятый усилитель мощности, четвертый смеситель, второй вход которого соединен с выходом четвертого гетеродина и второй усилитель первой промежуточной частоты, последовательно включенные второй усилитель-ограничитель, второй синхронный детектор и микропроцессор, последовательно подключенные к выходу второго усилителя-ограничителя второй перемножитель, второй вход которого соединен с выходом четвертого гетеродина, второй полосовой фильтр и второй фазовый детектор, второй вход которого соединен с выходом третьего гетеродина, а выход подключен к микропроцессору, первый приемник, размещенный на каждом погрузчике и трейлере, содержит последовательно включенные вторую приемную антенну, усилитель высокой частоты, первую линию задержки, третий фазовый детектор, второй вход которого соединен с выходом усилителя высокой частоты, и блок определения местоположения погрузчика или трейлера, второй вход и выход которого подключены к микропроцессору дуплексной радиостанции, второй приемник с третьей приемной антенной, размещенный на каждом погрузчике и трейлере, подключен к микропроцессору дуплексной радиостанции, последовательно подключенные к микропроцессору третий задающий генератор, шестой усилитель мощности, третий дуплексер, вход-выход которого связан с третьей приемопередающей антенной, седьмой усилитель мощности, четвертый фазовый детектор, второй вход которого соединен с выходом третьего задающего генератора, коррелятор, второй вход которого соединен с микропроцессором, пороговый блок, первый ключ, второй вход которого соединен с выходом четвертого фазового детектора, вторая линия задержки, сумматор, второй и третий входы которого соединены со вторым выходом датчика номера погрузчика или трейлера и микропроцессором соответственно, а выход подключен ко второму входу третьего фазового манипулятора, к выходу порогового блока подключены световой и звуковой маячки, к выходу первого ключа подключен второй блок регистрации, отличается от ближайшего аналога тем, что каждый строительный модуль и блок снабжен радиочастотной меткой, выполненной в виде пьезокристалла с нанесенным на его поверхность алюминиевым тонкопленочным встречно-штыревым преобразователем поверхностных акустических волн и набором отражателей, причем встречно-штыревой преобразователь состоит из двух гребенчатых систем электродов, нанесенных на поверхность пьезокристалла, электроды каждой из гребенок соединены друг с другом шинами, которые в свою очередь соединены с микрополосковой приемопередающей антенной, изготовленной также на поверхности пьезокристалла, дуплексная радиостанция, размещенная на диспетчерском геодезическом пункте, снабжена первым усилителем суммарной частоты, первым амплитудным детектором и вторым ключом, причем к выходу второго смесителя последовательно подключены первый усилитель суммарной частоты, первый амплитудный детектор и второй ключ, второй вход которого соединен с выходом первого усилителя второй промежуточной частоты, а выход подключен к входу первого усилителя-ограничителя и ко второму входу первого синхронного детектора, дуплексная радиостанция, размещенная на каждом погрузчике и трейлере, снабжена вторым усилителем суммарной частоты, вторым амплитудным детектором и третьим ключом, причем к выходу четвертого смесителя последовательно подключены второй усилитель суммарной частоты, второй амплитудный детектор и третий ключ, второй вход которого соединен с выходом второго усилителя первой промежуточной частоты, а выход подключен к входу второго усилителя-ограничителя и ко второму входу второго синхронного детектора.

Структурная схема предлагаемой системы представлена на фиг. 1. Структурные схемы дуплексной и передающей радиостанций, размещенных на диспетчерском геодезическом пункте, изображены на фиг. 2. Частотная диаграмма, иллюстрирующая преобразование сигналов, показана на фиг. 3. Структурные схемы дуплексной радиостанции, двух приемников и считывателя, размещенных на каждом погрузчике и трейлере, представлены на фиг. 4. Функциональная схема радиочастотной метки изображена на фиг. 5. Структурная схема фрагмента радиотелефонной системы общего пользования с сотовой структурой представлена на фиг. 6. Геометрическая схема расположения геостационарного ИСЗ-ретранслятора S и трех наземных пунктов А, В и С показана на фиг. 7.

Компьютерная система управления строительным комплексом содержит диспетчерский геодезический пункт 1, на котором размещены дуплексная и передающая радиостанции, домокомбинат 2 для производства строительных модулей, блоков и материалов, склады 3 строительных модулей, блоков и материалов, строительная площадка 4, на которой возводятся дома и сооружения, погрузчики 5.i (i=1, 2, …, n), трейлеры 6.j (j=1, 2, …, m), устройства 7.1 (1=1, 2, …, 1) для управления робототехнологическими комплексами и систему 8 приема и передачи информации (ППИ). При этом на каждом погрузчике и трейлере размещены дуплексная радиостанция, два приемника и считыватель. Между диспетчерским геодезическим пунктом 1 и погрузчиками (трейлерами) установлены пейджинговая и двусторонняя радиосвязь непосредственно и/или через систему 8 приема и передачи информации.

Дуплексная радиостанция, размещенная на диспетчерском геодезическом пункте 1, содержит последовательно включенные компьютер 9, первый задающий генератор 10, первый фазовый манипулятор 12, второй вход которого через источник 11 дискретных сообщений соединен с компьютером 9, первый амплитудный модулятор 14, второй вход которого через источник 13 непрерывных сообщений соединен с компьютером 9, первый смеситель 16, второй вход которого соединен с выходом первого гетеродина 15, первый усилитель 18 первой промежуточной частоты, первый усилитель 19 мощности, первый дуплексер 20, вход-выход которого связан с первой приемопередающей антенной 21, второй усилитель 22 мощности, второй смеситель 23, второй вход которого соединен с выходом второго гетеродина 17, первый усилитель 87 суммарной частоты, первый амплитудный детектор 88 и второй ключ 89, второй вход которого через первый усилитель 24 второй промежуточной частоты соединен с выходом второго смесителя 23, первый усилитель-ограничитель 25, первый синхронный детектор 26, второй вход которого соединен с выходом второго ключа 80, компьютер 9 и первый блок 30 регистрации. К выходу первого усилителя-ограничителя 25 последовательно подключены первый перемножитель 27, второй вход которого соединен с выходом второго гетеродина 17, первый полосовой фильтр 28 и первый фазовый детектор 29, второй вход которого соединен с выходом первого гетеродина 15, а выход подключен к компьютеру 9.

Передающая радиостанция, размещенная на диспетчерском геодезическом пункте 1, содержит последовательно включенные второй задающий генератор 34, второй фазовый манипулятор 35, второй вход которого соединен с прибором 33 дифференциальных поправок, подключенным к выходу приемника 32 GPS-сигналов с антенной 31, третий усилитель 36 мощности и передающую антенну 37.

Дуплексная радиостанция, размещаемая на каждом погрузчике (трейлере), содержит последовательно включенные датчик 38 номера погрузчика (трейлера), микропроцессор 40, к которому подключен датчик 39 погрузки-разгрузки, третий задающий генератор 41, третий фазовый манипулятор 42, второй амплитудный модулятор 43, ко второму входу которого подключен микропроцессор 40, третий смеситель 45, второй вход которого соединен с выходом третьего гетеродина 44, второй усилитель 47 второй промежуточной частоты, четвертый усилитель 48 мощности, второй дуплексер 49, вход-выход которого связан со второй приемопередающей антенной 50, пятый усилитель 51 мощности, четвертый смеситель 52, второй вход которого соединен с выходом четвертого гетеродина 46, второй усилитель 90 суммарной частоты, второй амплитудный детектор 91 и третий ключ 92, второй вход которого через второй усилитель 53 первой промежуточной частоты соединен с выходом четвертого смесителя 52, второй усилитель-ограничитель 54, второй синхронный детектор 55, второй вход которого соединен с выходом третьего ключа 83, и микропроцессор 40. К выходу второго усилителя-ограничителя 54 последовательно подключены второй перемножитель 56, второй вход которого соединен с выходом четвертого гетеродина 46, второй полосовой фильтр 57 и второй фазовый детектор 58, второй вход которого соединен с выходом гетеродина 44, а выход подключен к микропроцессору 40.

Первый приемник, размещенный на погрузчике (трейлере), содержит последовательно включенные вторую приемную антенну 59, усилитель 60 высокой частоты и блок 63 определения местоположения погрузчика (трейлера), второй вход и выход которого соединены с микропроцессором 40.

Второй приемник 65 с третьей приемной антенной 64 обеспечивает прием навигационных GPS-сигналов и подключен к микропроцессору 40.

Считыватель, размещенный на погрузчике (трейлере), содержит последовательно подключенные к выходу третьего задающего генератора 41 шестой усилитель 66 мощности, третий дуплексер 67, вход-выход которого связан с третьей приемопередающей антенной 68, седьмой усилитель 69 мощности, четвертый фазовый детектор 70, второй вход которого соединен с выходом третьего задающего генератора 41, коррелятор 71, второй вход которого соединен с микропроцессором 40, пороговый блок 72, ключ 76, второй вход которого соединен с выходом фазового детектора 70, вторая линия задержки 77 и сумматор 78, второй и третий входы которого соединены со вторым выходом датчика 38 номера погрузчика (трейлера) и микропроцессором 40 соответственно, а выход подключен ко второму входу третьего фазового манипулятора 42. К выходу порогового блока 72 подключены световой и звуковой маячки. К выходу ключа 76 подключен второй блок 75 регистрации.

Каждый строительный блок (модуль) снабжен радиочастотной меткой, выполненной в виде пьезокристалла 79 с нанесенным на его поверхность алюминиевым тонкопленочным встречно-штыревым преобразователем поверхностных акустических волн (ПАВ) и набором отражателей 84. Причем встречно-штыревой преобразователь ПАВ состоит из двух гребенчатых систем электродов 81, нанесенных на поверхность пьезокристалла 79, электроды 81 каждой из гребенок соединены друг с другом шинами 82 и 83, которые в свою очередь соединены с микрополосковой приемопередающей антенной 80, изготовленной также на поверхности пьезокристалла 79.

В качестве системы 8 приема и передачи информации может использоваться радиотелефонная система общего пользования с сотовой структурой, фрагмент которой изображен на фиг. 6.

Территория строительного комплекса и прилегающая к нему территория разделяются на ячейки (соты), в каждой из которых устанавливается базовая радиостанция 86.к (к=1, 2, …, К), которая связана радиоканалом с погрузчиком 5.i (i=l, 2, …, n) или трейлером 6.j (j=1, 2, …, m). При этом передатчики указанных радиостанций имеют относительно небольшую мощность. Чтобы оптимально разделить определенную территорию на микрозоны без перекрытий и пропусков участков, могут быть использованы только три геометрические фигуры: треугольник, квадрат и шестиугольник. Наиболее подходящей фигурой является шестиугольник, так как если антенну базовой радиостанции 86.к (к=1, 2, …, К) установить в его центре, то круговая форма диаграммы направленности будет покрывать почти всю его площадь. Все микрозоны (соты) связаны соединительными линиями с центральной радиостанцией 85, которая, в свою очередь, соединена с автоматической телефонной сетью (АТС), а через нее и с диспетчерским геодезическим пунктом 1. В качестве соединительных линий могут использоваться кабели и радиорелейные линии. Расчет и практика использования сотовых систем связи показывают, что радиусы зон ячеек могут быть в пределах от 2 до 10 км.

В качестве системы 8 приема и передачи информации может использоваться и спутниковая система связи (фиг. 7). При этом искусственные спутники Земли могут размещаться на низких или высоких (геостационарных) орбитах.

Следовательно, в состав предлагаемой системы входят космический сегмент, состоящий из 24 КА, сеть наземных станций наблюдения за их работой и приемники GPS-сигналов, установленные на диспетчерском геодезическом пункте 1, на погрузчиках 5.i (i=l, 2, …, n) и трейлерах 6.j (j=l, 2, …, m). Приемники GPS-сигналов позволяют определять координаты погрузчиков (трейлеров) (широту и долготу), скорость их движения и точное время.

Каждый GPS-спутник излучает на двух частотах (ωI=1757 МГц и ωII=12,275 МГц) специальный навигационный сигнал в виде бинарного фазоманипулированного (ФМН) сигнала, манипулированного по фазе псевдослучайной последовательностью. В сигнале зашифровываются два вида кодов. Один из них - код С/А - доступен широкому кругу гражданских потребителей, в том числе и предлагаемой системе. Он позволяет получать лишь приблизительную оценку местоположения погрузчиков (трейлеров), поэтому называется «грубым» кодом. Передача кода С/А осуществляется на частоте ωI=1575 МГц с использованием фазовой манипуляцией псевдослучайной последовательностью длиной 1023 символа. Защита от ошибок обеспечивается с помощью кода Гоулда. Период повторения С/А-кода - 1 мс. Тактовая частота - 1,023 МГц.

Другой код - Р - обеспечивает более точное вычисление координат, но пользоваться им способны не все, доступ к нему ограничивается провайдером услуг GPS, используется военным ведомством США.

Компьютерная система управления строительным комплексом функционирует следующим образом.

С целью передачи необходимой информации на избранный погрузчик 5.i (i=l, 2, …, n) и/или трейлер 6.j (j=1, 2, …, m) на диспетчерском геодезическом пункте 1 с помощью компьютера 9 включается задающий генератор 10, который формирует высокочастотный сигнал

,

где Uc, ωс, ϕс, Тс - амплитуда, несущая частота, начальная фаза и длительность сигнала.

Данный сигнал с выхода задающего генератора 10 поступает на первый вход фазового манипулятора 12, на второй вход которого подается модулирующий код M1(t) с выхода источника 11 дискретных сообщений. На выходе фазового манипулятора 12 образуется фазоманипулированный (ФМН) сигнал

,

где ϕk1(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M1(t), причем ϕk1(t)=const при Кτэ<t<(k+1)τэ и может

изменяться скачком при t=Кτэ, т.е. на границах между элементарными посылками (К=1, 2, …, N - 1);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тссэ ⋅ N).

Этот сигнал поступает на первый вход амплитудного модулятора 14, на второй вход которого подается модулирующая функция m1(t) с выхода источника 13 аналоговых сообщений. На выходе амплитудного модулятора 14 образуется сложный сигнал с комбинированной фазовой манипуляцией и амплитудной модуляцией (ФМН-AM)

где m1(t) - модулирующая функция, отображающая закон амплитудной модуляции.

Работа источников дискретных 11 и аналоговых 13 сообщений синхронизируется компьютером 9.

Сформированный сигнал u2(t) поступает на первый вход первого смесителя 16, на второй вход которого подается напряжение первого гетеродина 15

.

На выходе смесителя 16 образуются напряжения комбинационных частот. Усилителем 18 выделяется напряжение первой промежуточной (суммарной) частоты

,

где ;

- первая промежуточная (суммарная) частота;

,

которое после усиления в усилителе 19 мощности через дуплексер 20 поступает в приемопередающую антенну 21, излучается ею на частоте ω1 в эфир (в направлении строительного комплекса), улавливается приемопередающей антенной 50 погрузчика или трейлера и через дуплексер 49 и усилитель мощности поступает на первый вход смесителя 52, на второй вход которого подается напряжение гетеродина 46

.

На выходе смесителя 52 образуются напряжения комбинационных частот.

Усилителями 53 и 90 выделяются напряжения второй промежуточной (разностной) и первой суммарной частот соответственно:

где ;

- вторая промежуточная (разностная) частота;

- первая суммарная частота;

.

Напряжение u∑1(t) первой суммарной частоты поступает на вход амплитудного детектора 91, который выделает его огибающую. Последняя поступает на управляющий вход ключа 92 и открывает его. В исходном состоянии ключ всегда закрыт. При этом напряжение uпр2(t) через открытый ключ 92 поступает на вход усилителя-ограничителя 54, на выходе которого образуется напряжение

где U0 - порог ограничения усилителя-ограничителя 54,

которое представляет собой ФМН-сигнал, используется в качестве опорного напряжения и поступает на второй (опорный) вход синхронного детектора 55. На первый (информационный) вход синхронного детектора 55 подается напряжение uпр2 (t) с выхода усилителя 53 второй промежуточной частоты. На выходе синхронного детектора 55 образуется низкочастотное напряжение

пропорциональное модулирующей функции m1(t). Это напряжение поступает в микропроцессор 40.

Напряжение u3(t) с выхода усилителя-ограничителя 54 одновременно поступает на первый вход перемножителя 56, на второй вход которого подается напряжение uг1(t) с выхода гетеродина 46. На выходе перемножителя 56 образуется напряжение

где ;

- вторая промежуточная (разностная) частота;

,

которое представляет собой ФМН-сигнал на частоте гетеродина 44. Это напряжение выделяется полосовым фильтром 57 и поступает на первый (информационный) вход фазового детектора 58, на второй (опорный) вход которого подается напряжение гетеродина 44

.

На выходе фазового детектора 58 образуется низкочастотное напряжение

,

где ;

пропорциональное модулирующему коду M1(t). Это напряжение поступает в микропроцессор 40.

Частоты и гетеродинов разнесены на значение второй промежуточной частоты (фиг. 3)

.

Следовательно, в дискретных и аналоговых сообщениях, передаваемых с диспетчерского геодезического пункта 1 на выбранный погрузчик и/или трейлер, содержится вся необходимая информация водителю и/или водителям о номерах строительных блоков (модулей), их местоположении, порядке действий и т.п.

Скорость обновления навигационных данных - 1 с. Время обнаружения зависит от числа одновременно наблюдаемых спутников и режима определения местоположения погрузчика (трейлера).

Определение навигационных параметров может производиться в двух режимах - 2Д (двухмерном) и 3Д (пространственном). В режиме 2Д устанавливаются широта и долгота. Для этого достаточно присутствия в зоне радиовидимости трех спутников. Точность определения местоположения погрузчика (трейлера) - 15-20 м.

Один из основных методов повышения точности определения местонахождения погрузчика (трейлера) и устранения ошибок, связанных с введением режима селективного доступа, основан на применении известного в радионавигации принципа дифференциальных навигационных измерений.

Дифференциальный режим позволяет установить координаты погрузчика (трейлера) с точностью до 5 м в динамической навигационной обстановке и до 2 м в стационарных условиях.

Дифференциальный режим реализуется с помощью приемника 32 GPS-сигналов, размещенного на диспетчерском геодезическом пункте 1. Приемник 32 GPS-сигналов является многоканальным, каждый канал отслеживает один видимый спутник. Необходимость непрерывного отслеживания каждого КА обусловлена тем, что указанный приемник должен «захватывать» навигационные сообщения раньше, чем приемники погрузчиков (трейлеров). Сравнивая известные координаты, полученные в результате прецизионной геодезической съемки, с измеренными, прибор 33 вырабатывает дифференциальные поправки, которые передаются погрузчикам (трейлерам) по радиоканалу с помощью задающего генератора 34, фазового манипулятора 35, усилителя 36 мощности и передающей антенны 37 в заранее оговоренном формате.

Аппаратура погрузчика (трейлера) включает в себя первый приемник, который и позволяет получать дифференциальные поправки с диспетчерского геодезического пункта 1. Поправки, принятые с пункта 1, автоматически вносятся в результаты собственных измерений вторым приемником погрузчика (трейлера).

Для каждого КА, сигналы которого поступают на приемную антенну 64, поправка, полученная от пункта 1, складывается с результатом измерения псевдодальности.

Для точного определения местоположения погрузчиков и трейлеров на диспетчерском геодезическом пункте 1 задающим генератором 34 формируется высокочастотный сигнал

,

который поступает на первый вход фазового манипулятора 35, на второй вход которого с выхода прибора 33 дифференциальных поправок поступает модулирующий код M2(t), содержащий соответствующие поправки к определению местоположения выбранного погрузчика и/или трейлера. На выходе фазового манипулятора 35 образуется ФМН-сигнал

,

где ϕk2 (t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M2(t), который после усиления в усилителе 36 мощности поступает в приемную антенну 37, излучается ею в эфир, улавливается приемной антенной 59 и через усилитель 60 высокой частоты поступает на два входа фазового детектора 62 непосредственно и через линию задержки 61, время задержки τз1 которой выбирается равной длительности τэ элементарных посылок (τз1э)

.

На выходе фазового детектора 62 образуется низкочастотное напряжение

,

где ,

которое поступает на первый вход блока 63 определения местоположения погрузчика (трейлера).

Для точного определения местоположения погрузчика (трейлера) используется и второй приемник 65 с приемной антенной 64, размещенный на его борту, который последовательно захватывает и обрабатывает С/А-сигналы спутниковой системы «Навстар» («Глонасс»). При этом данный приемник попеременно использует два основных режима работы - приема информации и навигационный. В навигационном режиме каждую секунду уточняется местоположение погрузчика (трейлера) и выдаются основные навигационные данные. В режиме приема информации принимаются данные эфемерид и поправок времени, необходимые для навигационного режима, и производятся более редкие (через одну минуту) навигационные измерения.

Микропроцессор 40 выполняет две основные функции: обслуживает второй приемник 65 и производит навигационные расчеты. Первая заключается в выборе рабочего созвездия спутников, вычислении данных целеуказания и управлении работой второго приемника, например, переключение из режима приема информации в навигационный режим и обратно. Вторая функция микропроцессора 40 состоит в расчете эфемерид, определении координат местоположения погрузчика (трейлера) и выдаче для отображения на дисплее, который входит в состав блока 63 определения местоположения погрузчика (трейлера).

При получении информации диспетчерского геодезического пункта 1 о номерах и местоположении строительных блоков (модулей), которые необходимо обнаружить и погрузить (разгрузить) на соответствующее транспортное средство, погрузчик (трейлер) прибывает в заданный район и включает считыватель. При этом задающий генератор 41 формирует высокочастотный сигнал

который поступает на первый вход фазового манипулятора 42 и через усилитель 66 мощности и дуплексер 67 поступает в рупорную приемопередающую антенну 68, излучается ею в эфир и облучает ближайший строительный блок (модуль) радиочастотной меткой.

Высокочастотный сигнал uc(t) на частоте ωс улавливается микрополосковой антенной 80, настроенной на частоту ωс, преобразуется встречно-штыревым преобразователем в акустическую волну, которая распространяется по поверхности пьезокристалла 79, отражается от набора отражателей 84 и опять преобразуется в сложный сигнал с фазовой манипуляцией (ФМн)

,

где ϕk3(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M3(t), отображающим идентификационный номер строительного блока (модуля) и определяется топологией встречно-штыревого преобразователя.

В качестве примера на фиг. 5 изображен модулирующий код М3=1011010010110. Сформированный сложный ФМн-сигнал u7(t) излучается микрополосковой антенной 80 в эфир, улавливается рупорной приемопередающей антенной 68 и через дуплексер 67 и усилитель 69 мощности поступает на первый (информационный) вход фазового детектора 70. На второй (опорный) вход фазового детектора 70 в качестве опорного напряжения подается высокочастотный сигнал uc(t) с выхода задающего генератора 41. На выходе фазового детектора 70 образуется низкочастотное напряжение

,

где ,

пропорциональное модулирующему коду M3(t).

Это напряжение поступает на первый вход коррелятора 71, на второй вход которого подаются модулирующие коды, отражающие номера запрашиваемых строительных блоков (модулей). Если модулирующие коды совпадают, то на выходе коррелятора 71 формируется максимальное напряжение Umax, которое превышает пороговое напряжение Unop в пороговом блоке 72 (Umax>Unop). При превышении порогового уровня Unop в пороговом блоке 72 формируется постоянное напряжение, которое поступает на управляющий вход ключа 76, открывая его, на световой 73 и звуковой 74 маячки, заставляя их работать. В исходном состоянии ключ 76 всегда закрыт.Световой, и звуковой сигналы свидетельствуют об обнаружении необходимого строительного блока (модуля), номер которого регистрируется блоком 75 регистрации. Одновременно низкочастотное напряжение uH4(t), пропорциональное модулирующему коду M3(t), с выхода фазового детектора 70 через открытый ключ 76 поступает на вход линии задержки, где задерживается на время τз2, равное длительности номера погрузчика (трейлера) и его местоположения, и поступает на первый вход сумматора 78. На второй вход последнего подается номер погрузчика (трейлера) со второго выхода датчика 38 номера погрузчика (трейлера). На третий вход сумматора 78 подается код местоположения погрузчика (трейлера) из микропроцессора 40. На выходе сумматора 78 образуется суммарный модулирующий код M(t), состоящий из модулирующего кода M3(t), номера M4(t) погрузчика (трейлера) и его местоположения M5(t)

M2(t)=M3(t)+M4(t)+M5(t), длительностью τз2.

Модулирующий код M(t) с выхода сумматора 78, коды номера погрузчика (трейлера) и его состояния вместе с информацией о местоположении, текущем времени и найденных строительных блоков (модулей) передаются на диспетчерский геодезический пункт 1. Для этого используются датчик 38 номера погрузчика (трейлера), датчик 39 погрузки-разгрузки (состояния погрузчика), блок 63 определения местоположения погрузчика (трейлера), микропроцессор 40, задающий генератор 41, фазовый манипулятор 42 и амплитудный модулятор 43. На выходе последнего образуется сложный сигнал с комбинированной фазовой манипуляцией и амплитудной модуляцией (ФМН-АМ)

,

который поступает на первый вход смесителя 45, на второй вход которого подается напряжение гетеродина 44

.

На выходе смесителя 45 образуются напряжения комбинационных частот, усилителем 47 выделяется напряжение третьей промежуточной (разностной) частоты

,

где ;

- третья промежуточная (разностная) частота;

которое после усиления в усилителе 48 мощности через дуплексер 49 поступает в приемопередающую антенну 50, излучается ею в эфир на частоте , улавливается приемопередающей антенной 21 диспетчерского геодезического пункта 1 и через дуплексер 20 и усилитель 22 мощности поступает на первый вход смесителя 23, на второй вход которого подается напряжение гетеродина 17

.

На выходе смесителя 23 образуются напряжения комбинационных частот.

Усилителями 24 и 87 выделяются напряжения второй промежуточной (разностной) и второй суммарной частот соответственно:

где ;

- вторая промежуточная (разностная) частота;

- вторая суммарная частота;

Напряжение u∑2(t) второй суммарной частоты поступает на вход амплитудного детектора 88, который выделает его огибающую. Последняя поступает на управляющий вход ключа 89 и открывает его. В исходном состоянии ключ всегда закрыт. При этом напряжение uпр4(t) через открытый ключ 89 поступает на вход усилителя-ограничителя 25, на выходе которого образуется напряжение

,

где U0 - порог ограничения,

которое поступает на второй (опорный) вход синхронного детектора 26, на первый (информационный) вход которого подается напряжение Uпр4 (t) с выхода ключа 89. На выходе синхронного детектора 26 образуется низкочастотное напряжение

,

где ,

пропорциональное модулирующей функции m2(t).

Это напряжение поступает в компьютер 9 и затем может регистрироваться блоком 30 регистрации.

Напряжение u9(t) с выхода усилителя-ограничителя 25 одновременно поступает на первый вход перемножителя 27, на второй вход которого подается напряжение с выхода гетеродина 17. На выходе перемножителя 27 образуется напряжение

,

где ;

;

которое выделяется полосовым фильтром 28 и поступает на первый (информационный) вход фазового детектора 29, на второй (опорный) вход которого подается напряжение гетеродина 15

.

На выходе фазового детектора 29 образуется низкочастотное напряжение

,

где ,

пропорциональное модулирующему коду M(t). Это напряжение поступает в компьютер 9, а затем может регистрироваться блоком 30 регистрации. В качестве блока 30 регистрации может использоваться монитор компьютера 9 с изображением электронной карты местности строительного комплекса, города, Северо-Западного региона и т.д. На указанную карту выводится информация о местонахождении и перемещении строительных блоков (модулей). При этом погрузчики 5.i (i=1, 2, …, n) используются для обнаружения, погрузки и перемещения строительных блоков (модулей) из домокомбината на склады 3 и в зону отгрузки 4, а трейлеры 6.j (j=1, 2, …, m) для перемещения строительных блоков (модулей) к устройствам 7.1 (1=1, 2, …, 1) для управления робототехнологическими комплексами.

Описанная выше работа дуплексных радиостанций, размещенных на диспетчерском геодезическом пункте и погрузчиках (трейлерах), соответствует случаю приема полезных ФМН-АМ сигналов по основным каналам на частотах ω1 и ω2 (фиг. 3).

Если ложный сигнал (помеха) поступает по первому зеркальному каналу на частоту ω3,

,

то на выходе смесителя 52 образуются напряжения:

где ;

- вторая промежуточная (разностная) частота;

- третья суммарная частота;

Напряжение unp5(t) выделяется усилителем 53 второй промежуточной частоты. Так как частота настройки ωн усилителя 90 первой суммарной частоты выбрана равной ω=ω∑1∑2, напряжение u∑3(t) не попадает в полосу пропускания усилителя 90 первой суммарной частоты. Ключ 92 не открывается, и ложный сигнал (помеха), принимаемый по первому зеркальному каналу на частоте ωз1, подавляется.

По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые по первому ωк1 и второму ωк2 комбинационным каналам.

Если ложный сигнал (помеха) поступает по второму зеркальному каналу на частоте ωз2

,

то на выходе смесителя 23 образуются следующие напряжения:

где ;

- вторая промежуточная (разностная) частота;

- четвертая суммарная частота;

.

Напряжение Unp6 (t) выделяется усилителем 24 второй промежуточной частоты. Так как частота настройки ωH усилителя 87 второй суммарной частоты выбрана равной ωH∑1∑2, то напряжение u∑4 (t) не попадает в полосу пропускания усилителя 87 второй суммарной частоты. Ключ 89 не открывается и ложный сигнал (помеха), принимаемый по первому зеркальному каналу на частоте ωз2, подавляется.

По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые по первому ωк3 и второму ωк4 комбинационным каналам.

Описанная выше работа предлагаемой системы соответствует случаю, когда диспетчерский геодезический пункт 1 находится на незначительном расстоянии от строительного комплекса. При этом данная система обеспечивает обнаружение необходимых строительных блоков (модулей), контролирует перемещение строительных блоков (модулей) от домокомбината и складов до строительной площадки.

При организации региональных перевозок, доставке строительных блоков (модулей) на строительные площадки, удаленные от домокомбинатов на значительные расстояния используется система 8 приема и передачи информации, в качестве которой могут применяться радиотелефонная система общего пользования с сотовой структурой и спутниковая система связи.

При использовании радиотелефонной системы общего пользования с сотовой структурой (фиг. 6) информация с диспетчерского геодезического пункта 1 по телефонной сети поступает на центральную радиостанцию 85, а затем по соединительной линии на базовую радиостанцию 86.к (к=1, 2, …, К) той микрозоны (соты), где находится вызываемый погрузчик 5.i (i=l, 2, …, n) или трейлер 6.j (j=l, 2, …, m). Базовая радиостанция излучает сигнал, содержащий необходимую информацию, который принимается приемником дуплексной радиостанции, размещенной на погрузчике (трейлере). Погрузчик (трейлер) указанной радиостанции излучает сигнал, содержащий ответную информацию, который принимается базовой радиостанцией той микрозоны (соты), где появляется или находится погрузчик (трейлер). От базовой радиостанции данный сигнал поступает на центральную радиостанцию, а затем через АТС на диспетчерский пункт 1, где фиксируются номер погрузчика (трейлера), передаваемая информация и географические координаты его местоположения.

В качестве системы 8 приема и передачи информации может использоваться спутниковая система связи (фиг. 7). При этом диаграмма направленности бортовой антенны геостационарного ИС3-ретранслятора S выбирается так, чтобы ретранслированный сигнал мог быть принят в наземных пунктах А, В, и С. На наземном пункте А может располагаться диспетчерский геодезический пункт, а на пункте В - домокомбинат или трейлеры, перевозящие строителные блоки (модули), на пункте С - строительная площадка.

Предлагаемая система обеспечивает повышение оперативности и точности определения местоположения контейнеров в процессе их транспортирования (точность 20-100 м) и складирования (точность 1-5 м).

Кроме того, данная система позволяет:

• оперативно планировать работу, используя текущую информацию на строительном комплексе;

• свести до минимума ручные операции;

• оптимизировать работу погрузочной техники за счет использования диалогового режима при выдаче команд, точной информации о местоположении погрузчиков, оптимизации размещения строительных блоков (модулей) и минимизации перемещений порожних трейлеров;

• сократить время простоя трейлеров, автомашин, благодаря планированию работы персонала и погрузочной техники и информации о текущем расположении строительных блоков (модулей);

• протоколировать время начала, окончания и выполнения операций каждым работником терминала;

• фиксировать и уведомлять менеджера об отклонениях движения погрузчиков от намеченной траектории, т.е. фактах выхода погрузчика за пределы рабочей зоны, неоправданно долгих простоях погрузчика в какой-либо зоне;

• фиксировать достижение трейлером определенной зоны терминала и, следовательно, сокращать простой трейлеров в очередях.

Таким образом, предлагаемая система по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским геодезическим пунктом и погрузчиками (трейлерами). Это достигается путем подавления ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам. Причем для подавления ложных сигналов (помех), принимаемых по дополнительным каналам, используется метод суммарной частоты.

Следует отметить, что смесители представляют собой перемножители и при работе на линейных участках вольт-амперной характеристики на выходе смесителей образуются напряжения разностной (промежуточной) и суммарной частот. Как правило, используются только напряжения разностной (промежуточной) частоты. В предлагаемом техническом решении используются и напряжения суммарной частоты для подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Метод суммарной частоты отличается оригинальностью, высокой эффективностью и простотой технической реализации.

Каждый погрузчик (трейлер) снабжен считывателем, который имеет следующие основные характеристики:

• мощности передатчика считывателя - не более 10 МВт;

• частотный диапазон - 900-920 МГц;

• дальность обнаружения строительных блоков (модулей) - несколько десятков метров.

Строительные блоки (модули) снабжены радиочастотными метками на поверхностных акустических волнах. Габариты каждой радиочастотной метки - 8×15×5 мм, срок службы - не менее 20 лет, потребляемая мощность - 0 Вт.

Используемые радиочастотные метки предоставляют возможность дистанционного считывания информации о строительных блоках (модулей) неограниченное число раз в автоматическом режиме.

Компьютерная система управления строительным комплексом, содержащая диспетчерский геодезический пункт, на котором установлены приемник GPS-сигналов с антенной, предназначенный для приема навигационного сигнала, используемого для вычисления дифференциальных поправок, передающая радиостанция, предназначенная для передачи дифференциальных поправок на погрузчики и трейлеры, и дуплексная радиостанция, на каждом погрузчике и трейлере установлены дуплексная радиостанция, первый приемник с антенной, предназначенный для получения дифференциальных поправок с диспетчерского геодезического пункта, и второй приемник с антенной, предназначенный для приема навигационного GPS-сигнала, используемого для вычисления дифференциальных поправок, при этом между диспетчерским геодезическим пунктом и каждым погрузчиком и трейлером установлены пейджинговая и двухсторонняя радиосвязи непосредственно и/или через систему приема и передачи информации, дуплексная радиостанция, размещенная на диспетчерском геодезическом пункте, содержит последовательно включенные компьютер, первый задающий генератор, первый фазовый манипулятор, второй вход которого через источник дискретного сообщения соединен с компьютером, первый амплитудный модулятор, второй вход которого через источник аналогового сообщения соединен с компьютером, первый смеситель, второй вход которого соединен с выходом первого гетеродина, первый усилитель первой промежуточной частоты, первый усилитель мощности, первый дуплексер, вход-выход которого связан с первой приемопередающей антенной, второй усилитель мощности, второй смеситель, второй вход которого соединен с выходом второго гетеродина и первый усилитель второй промежуточной частоты, последовательно включенные первый усилитель-ограничитель, первый синхронный детектор, компьютер и блок регистрации, последовательно подключенные к выходу первого усилителя-ограничителя первый перемножитель, второй вход которого соединен с выходом второго гетеродина, первый полосовой фильтр и первый фазовый детектор, второй вход которого соединен с выходом первого гетеродина, а выход подключен к компьютеру, передающая радиостанция содержит последовательно включенные второй задающий генератор, второй фазовый манипулятор, второй вход которого соединен с прибором дифференциальных поправок, подключенным к выходу приемника GPS-сигналов с антенной, третий усилитель мощности и передающую антенну, дуплексная радиостанция, размещенная на каждом погрузчике и трейлере, содержит последовательно включенные микропроцессор, к которому подключены датчик номера погрузчика или трейлера и датчик погрузки-разгрузки погрузчика или трейлера, третий задающий генератор, третий фазовый манипулятор, второй амплитудный модулятор, второй вход которого соединен с микропроцессором, третий смеситель, второй вход которого соединен с выходом третьего гетеродина, второй усилитель второй промежуточной частоты, четвертый усилитель мощности, второй дуплексер, вход-выход которого связан со второй приемопередающей антенной, пятый усилитель мощности, четвертый смеситель, второй вход которого соединен с выходом четвертого гетеродина и второй усилитель первой промежуточной частоты, последовательно включенные второй усилитель-ограничитель, второй синхронный детектор и микропроцессор, последовательно подключенные к выходу второго усилителя-ограничителя второй перемножитель, второй вход которого соединен с выходом четвертого гетеродина, второй полосовой фильтр и второй фазовый детектор, второй вход которого соединен с выходом третьего гетеродина, а выход подключен к микропроцессору, первый приемник, размещенный на каждом погрузчике и трейлере, содержит последовательно включенные вторую приемную антенну, усилитель высокой частоты, первую линию задержки, третий фазовый детектор, второй вход которого соединен с выходом усилителя высокой частоты, и блок определения местоположения погрузчика или трейлера, второй вход и выход которого подключены к микропроцессору дуплексной радиостанции, второй приемник с третьей приемной антенной, размещенный на каждом погрузчике и трейлере, подключен к микропроцессору дуплексной радиостанции, последовательно подключенные к микропроцессору третий задающий генератор, шестой усилитель мощности, третий дуплексер, вход-выход которого связан с третьей приемопередающей антенной, седьмой усилитель мощности, четвертый фазовый детектор, второй вход которого соединен с выходом третьего задающего генератора, коррелятор, второй вход которого соединен с микропроцессором, пороговый блок, первый ключ, второй вход которого соединен с выходом четвертого фазового детектора, вторая линия задержки, сумматор, второй и третий входы которого соединены со вторым выходом датчика номера погрузчика или трейлера и микропроцессором соответственно, а выход подключен ко второму входу третьего фазового манипулятора, к выходу порогового блока подключены световой и звуковой маячки, к выходу первого ключа подключен второй блок регистрации, отличающаяся тем, что каждый строительный модуль и блок снабжен радиочастотной меткой, выполненной в виде пьезокристалла с нанесенным на его поверхность алюминиевым тонкопленочным встречно-штыревым преобразователем поверхностных акустических волн и набором отражателей, причем встречно-штыревой преобразователь состоит из двух гребенчатых систем электродов, нанесенных на поверхность пьезокристалла, электроды каждой из гребенок соединены друг с другом шинами, которые, в свою очередь, соединены с микрополосковой приемопередающей антенной, изготовленной также на поверхности пьезокристалла, дуплексная радиостанция, размещенная на диспетчерском геодезическом пункте, снабжена первым усилителем суммарной частоты, первым амплитудным детектором и вторым ключом, причем к выходу второго смесителя последовательно подключены первый усилитель суммарной частоты, первый амплитудный детектор и второй ключ, второй вход которого соединен с выходом первого усилителя второй промежуточной частоты, а выход подключен к входу первого усилителя-ограничителя и ко второму входу первого синхронного детектора, дуплексная радиостанция, размещенная на каждом погрузчике и трейлере, снабжена вторым усилителем суммарной частоты, вторым амплитудным детектором и третьим ключом, причем к выходу четвертого смесителя последовательно подключены второй усилитель суммарной частоты, второй амплитудный детектор и третий ключ, второй вход которого соединен с выходом второго усилителя первой промежуточной частоты, а выход подключен к входу второго усилителя-ограничителя и ко второму входу второго синхронного детектора.
КОМПЬЮТЕРНАЯ СИСТЕМА УПРАВЛЕНИЯ СТРОИТЕЛЬНЫМ КОМПЛЕКСОМ
КОМПЬЮТЕРНАЯ СИСТЕМА УПРАВЛЕНИЯ СТРОИТЕЛЬНЫМ КОМПЛЕКСОМ
КОМПЬЮТЕРНАЯ СИСТЕМА УПРАВЛЕНИЯ СТРОИТЕЛЬНЫМ КОМПЛЕКСОМ
КОМПЬЮТЕРНАЯ СИСТЕМА УПРАВЛЕНИЯ СТРОИТЕЛЬНЫМ КОМПЛЕКСОМ
КОМПЬЮТЕРНАЯ СИСТЕМА УПРАВЛЕНИЯ СТРОИТЕЛЬНЫМ КОМПЛЕКСОМ
КОМПЬЮТЕРНАЯ СИСТЕМА УПРАВЛЕНИЯ СТРОИТЕЛЬНЫМ КОМПЛЕКСОМ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 133.
19.01.2018
№218.016.059b

Диспетчерская система контроля движения городского транспорта

Изобретение относится к области общественного транспорта, в частности к средствам передачи информации для контроля движения городского транспорта, и может найти применение в автоматизированных системах управления транспортом города. Каждый радиокомплекс 1, установленный на транспортных...
Тип: Изобретение
Номер охранного документа: 0002630945
Дата охранного документа: 14.09.2017
19.01.2018
№218.016.065b

Строительный модуль для строительства зданий

Изобретение относится к области строительства зданий, в частности к строительству зданий из модулей. Технической задачей изобретения является создание строительного модуля для строительства зданий, обладающего повышенной заводской готовностью, а также удобного при монтаже и транспортировании....
Тип: Изобретение
Номер охранного документа: 0002631125
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.0bee

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Техническим...
Тип: Изобретение
Номер охранного документа: 0002632564
Дата охранного документа: 05.10.2017
13.02.2018
№218.016.216f

Автономная сигнально-пусковая система пожаротушения

Предлагаемая система относится к противопожарной технике, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использована для противопожарной защиты различных объектов и одновременной передачи сигналов...
Тип: Изобретение
Номер охранного документа: 0002641886
Дата охранного документа: 22.01.2018
04.04.2018
№218.016.31d9

Система автоматического управления микроклиматом в помещениях для размещения животных

Предлагаемая система относится к теплонасосным системам и установкам и может быть использована для горячего водоснабжения и отопления помещений. Система автоматического управления микроклиматом в помещениях для размещения животных, содержащая компрессор, два бака-аккумулятора, конденсатор,...
Тип: Изобретение
Номер охранного документа: 0002645203
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.34c3

Система интеллектуального управления и контроля параметров и режимов работы машин и оборудования ферм по производству молока

Изобретение относится к сельскому хозяйству, в частности к оборудованию ферм по производству молока. Датчики (1)-(6) соединены с многоканальными цифровыми измерителями (7)-(12), выходы которых через модуль (13) сбора данных соединены с компьютером (14) фермы. Видеокамеры (15) через регистратор...
Тип: Изобретение
Номер охранного документа: 0002646051
Дата охранного документа: 01.03.2018
01.03.2019
№219.016.d0e8

Способ обработки поверхности изделий и устройство для его реализации

Изобретение относится к области обработки и очистки поверхности нефтяного оборудования, например насосных штанг и насосно-компрессорных труб, на различных этапах технологического процесса и может найти широкое применение в нефтедобывающей промышленности. Способ включает возбуждение дугового...
Тип: Изобретение
Номер охранного документа: 02171721
Дата охранного документа: 10.08.2001
09.05.2019
№219.017.5138

Устройство для очистки поверхности изделий дуговым разрядом

Устройство относится к технике строительства и ремонта магистральных трубопроводов и может быть использовано в нефтегазодобывающей отрасли. В изобретении обеспечивается повышение производительности, качества и расширение ассортимента очищаемых изделий. Устройство содержит разъемные...
Тип: Изобретение
Номер охранного документа: 0002152271
Дата охранного документа: 10.07.2000
05.03.2020
№220.018.0966

Система мониторинга состояния льда и окружающей среды

Изобретение относится к области автоматизированного мониторинга состояния льда и окружающей среды с одновременным определением координат собственного местонахождения комплекса и передачей полученной информации по радиоканалу. Измерительно-навигационный комплекс содержит корпус 1, приемник 3...
Тип: Изобретение
Номер охранного документа: 0002715845
Дата охранного документа: 03.03.2020
17.06.2020
№220.018.2706

Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию

Изобретение относится к спутниковым системам для определения местоположения аварийных радиобуев (АРБ), предающих радиосигналы бедствия. Техническим результатом является повышение помехоустойчивости и достоверности принимаемых сложных сигналов с фазовой манипуляцией путем подавления ложных...
Тип: Изобретение
Номер охранного документа: 0002723443
Дата охранного документа: 11.06.2020
Показаны записи 121-130 из 183.
10.05.2018
№218.016.4bf6

Устройство контроля параметров движения транспортного средства (черный ящик)

Изобретение относится к приборостроению. Устройство контроля параметров движения транспортного средства содержит датчик импульсов пути, счетчики импульсов пути, микропроцессоры, блок управления, датчики состояния: тормозной системы, приборов сигнализации, фар, распределительный блок,...
Тип: Изобретение
Номер охранного документа: 0002651935
Дата охранного документа: 24.04.2018
29.05.2018
№218.016.5778

Способ синхронизации часов

Предлагаемый способ относится к технике связи и может быть использован в радиоинтерферометрии со сверхдлинными базами, а также в службе единого времени и частоты. Технической задачей изобретения является повышение точности сличения удаленных шкал времени путем автоматического выполнения...
Тип: Изобретение
Номер охранного документа: 0002654846
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.58e2

Система для определения скорости распространения и направления прихода ионосферного возмущения

Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, предвестников землетрясений, извержения вулканов, цунами, процессов грозовой активности, динамики мощных циклонов, а также для обнаружения ядерных и иных...
Тип: Изобретение
Номер охранного документа: 0002655164
Дата охранного документа: 24.05.2018
09.06.2018
№218.016.5a8a

Способ определения расхода жидкости в трубопроводе

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта и электромагнитного явления. Устройство, реализующее предлагаемый способ, содержит трубопровод 1, ферритовое кольцо 2, обмотку 3, помещенную в...
Тип: Изобретение
Номер охранного документа: 0002655621
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5fec

Компьютерная система управления портовым контейнерным терминалом

Компьютерная система управления портовым контейнерным терминалом содержит диспетчерский геодезический пункт с приемником GPS-сигнала, передающей радиостанцией и дуплексной радиостанцией, установленные на каждом погрузчике и трейлере дуплексную радиостанцию, два приемника, один из которых...
Тип: Изобретение
Номер охранного документа: 0002656972
Дата охранного документа: 07.06.2018
20.06.2018
№218.016.6454

Система дистанционного контроля состояния атмосферы и ледяного покрова в северных районах

Изобретение относится к системам для дистанционного контроля состояния окружающей среды. Сущность: система содержит блок управления, блок определения координат по системе спутниковой навигации, блок определения состояния атмосферы, блок определения толщины ледяного покрова, блок электропитания,...
Тип: Изобретение
Номер охранного документа: 0002658123
Дата охранного документа: 19.06.2018
12.07.2018
№218.016.6fe8

Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - определение местоположения...
Тип: Изобретение
Номер охранного документа: 0002660752
Дата охранного документа: 10.07.2018
14.07.2018
№218.016.7171

Способ дистанционного контроля лифтов и устройство для его осуществления

Изобретение относится к области устройств лифтовых установок для дистанционного контроля состояния лифтов. Устройство, реализующее способ дистанционного контроля, включает датчик движения кабины, блок преобразователя, блок обработки, временной счетчик с часами реального времени, вычислительный...
Тип: Изобретение
Номер охранного документа: 0002661256
Дата охранного документа: 13.07.2018
09.08.2018
№218.016.7939

Способ мониторинга лесных пожаров и комплексная система раннего обнаружения лесных пожаров

Предлагаемый способ и система относятся к области пожарной безопасности и могут быть использованы для постоянного наземного мониторинга лесных массивов и населенных пунктов в местах, где развернута система сотовой связи. Техническим результатом является повышение достоверности обмена аналоговой...
Тип: Изобретение
Номер охранного документа: 0002663246
Дата охранного документа: 03.08.2018
23.10.2018
№218.016.9536

Способ синхронизации часов и устройство для его реализации

Предлагаемые способ и устройство синхронизации часов относятся к технике связи и могут быть использованы в радиоинтерферометрии со сверхдлинными базами (РСДБ), а также в службе единого времени и частоты. Технической задачей изобретения является повышение достоверности дуплексной радиосвязи...
Тип: Изобретение
Номер охранного документа: 0002670334
Дата охранного документа: 22.10.2018
+ добавить свой РИД