×
25.08.2017
217.015.b6b1

Результат интеллектуальной деятельности: СПОСОБ СОЗДАНИЯ ОБРАЗЦОВ С ЗАРАНЕЕ ЗАДАННОЙ ТЕРМО-ЭДС, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ

Вид РИД

Изобретение

№ охранного документа
0002614739
Дата охранного документа
29.03.2017
Аннотация: Изобретение относится к электротехнике, а именно к области прямого преобразования тепловой энергии в электрическую энергию, и может быть использовано для получения образцов магнитных полупроводников - легированных манганитов с заданной термо-ЭДС для последующего их использования в источниках автономного электропитания. Техническим результатом изобретения является возможность получения легированных манганитов с заранее заданной термо-ЭДС за счет изготовления образца определенного объема, рассчитанного на основании данных, полученных на расчетном образце аналогичного состава, и помещенного в условия, приближенные к условиям эксплуатации готового образца. Способ создания образцов с заранее заданной термо-ЭДС, предназначенных для преобразования тепловой энергии в электрическую, выполненных из легированных манганитов, имеющих формулу ReMeMnO, где Re - редкоземельные элементы, a Me - щелочноземельные металлы, при этом 0

Область техники

Изобретение относится к электротехнике, а именно к области прямого преобразования тепловой энергии в электрическую энергию, и может быть использовано для получения образцов магнитных полупроводников - легированных манганитов с заданной термо-ЭДС для последующего их использования в космической технике, химической, пищевой и легкой промышленности.

Уровень техники

Из литературных источников следует, что величина термо-ЭДС, возникающая между границами немагнитного однородного полупроводника, в котором существует градиент температур ΔТ, не зависит от объема образца, а зависит только от разности температур между его концами (см. А.Ф. Иоффе. Физика полупроводников. 1957, Из-во АН СССР).

Известны термоэлектрические магнитнополупроводниковые материалы - легированные манганиты, которые содержат около примесей микрообласти (ферроны) с кристаллической структурой, отличной от матрицы, в которых концентрируются носители заряда.

Эти материалы имеют структуру перовскита и описываются общей химической формулой Re1-xMexMnO3 (где Re - это редкоземельные элементы; Me - щелочноземельные металлы и 0<x≤0.5) (см. Hassen A., Magdal P. Correlation between structural, transport, and magnetic properties in Sm(1-x)AxMnO3 (A=Sr, Ca). Journal of Applied Physics, 101 (11), 2007, pp. 113917-1 - 113917-7; Joy Lija K., Shanmukharao Samatham, Senoy Thomas, Ganesan V., Salim Al-Harthi, Liebig A., Albrecht M., Anantharaman M.R. Colossal thermoelectric power in charge ordered lanthanum calcium manganites (La0.5Ca0.5MnO3). Journal of Applied Physics 116 (21), 2014, pp. 213701-1 - 213701-8; Sagar S., Ganesan V., Joy P,A., Thomas S., Liebig A., Albrecht M., Anantharaman M.R. Colossal thermoelectric power in Gd-Sr manganites. Europhysics Letters, 91(17), 2010, p. 12217008).

Максимальная величина термо-ЭДС в легированных манганитах наблюдается в районе температуры магнитного превращения - температуры Кюри: например, для Sm0.5Sr0.5MnO3 термо-ЭДС достигает 56 мкВ/К при 130 К; для La0.5Ca9.5MnO3 термо-ЭДС достигает 80 мВ/К при 58 К и для Gd0.5Sr9.5MnO3 термо-ЭДС достигает 34 мВ/К при 40 К.

Для того чтобы получить заданную термо-ЭДС в легированных манганитах, обычно прикладывают внешнее магнитное поле величиной до 13 кЭ, которое позволяет уменьшать термо-ЭДС. Таким образом, данный способ не позволяет создавать образцы легированных манганитов с заранее заданной термо-ЭДС и может использоваться только для уменьшения термо-ЭДС.

В уровне техники отсутствуют сведения о зависимости влияния объема образца легированного манганита на величину его термо-ЭДС.

Раскрытие изобретения

Задачей изобретения является разработка способа создания образцов из легированных манганитов с заранее заданными параметрами термо-ЭДС в пределах возможно допустимых значений термо-ЭДС в зависимости от используемого состава манганита.

Техническим результатом изобретения является возможность получения легированных манганитов с заранее заданной термо-ЭДС за счет изготовления образца определенного объема, рассчитанного на основании данных, полученных на расчетном образце аналогичного состава, и помещенного в условия, приближенные к условиям эксплуатации готового образца. Кроме того, найден состав манганита Sm0.7Sr0.3MnO3, обеспечивающий получение повышенного значения термо-ЭДС (90 мВ/К) при температуре в области температуры Кюри 87 К. В свою очередь легированные манганиты, полученные заявляемым способом и обладающие большой величиной термо-ЭДС, предпочтительно использовать для получения автономного электропитания, например, для автономной работы спутника.

Задача изобретения решается за счет того, что способ создания образцов с заранее заданной термо-ЭДС, предназначенных для преобразования тепловой энергии в электрическую, выполненных из легированных манганитов, имеющих формулу Re1-xMexMnO3, где Re - редкоземельные элементы, a Me - щелочноземельные металлы, при этом 0<x≤0.5, характеризуется тем, что из заготовки легированного манганита формируют образец объемом V, при этом данный объем V предварительно рассчитывают по формуле:

V=S/S0 [см3],

где S - заранее заданная термо-ЭДС [мВ/К];

S0 - величина термо-ЭДС эталонного (расчетного) образца, приходящаяся на единицу объема легированного манганита [мВ/К⋅см3], измеренная в температурных условиях, приближенных к условиям эксплуатации создаваемого образца.

Re - редкоземельный элемент - может представлять собой один из следующих элементов: La, Sm, Gd, Sc, Се, Pr, Nd, Pm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu.

Me - щелочноземельный металл - может представлять собой один из следующих элементов: Sr, Са, Ва.

При осуществлении способа можно сформировать образец из заготовки способом бестигельной зонной плавки.

При осуществлении способа можно сформировать образец из заготовки способом керамической технологии.

Осуществление изобретения

Изобретение может быть осуществлено следующим образом.

Изготавливают расчетный образец выбранного легированного манганита, имеющего формулу Re1-xMexMnO3, где Re - это редкоземельные элементы, Me - щелочноземельные металлы, а 0<x≤0.5.

Данный (эталонный) расчетный образец может быть получен любым известным способом, например: способом бестигельной зонной плавки, или по керамической технологии, или путем формирования образца из заготовки выбранного манганита большего размера (объема) посредством удаления излишек. При этом не имеет значения геометрическая форма расчетного образца (цилиндр, шар, куб и т.п.), т.к. значение термо-ЭДС не зависит от его геометрической формы.

Ниже будут более подробно представлены варианты получения расчетного образца способом бестигельной зонной плавки и по керамической технологии.

Далее с помощью стандартных средств (вольтметра) измеряют величину термо-ЭДС [мВ/К] расчетного образца. Для этого вольтметр подключают к противоположным концам расчетного образца. Данное измерение проводят в температурных условиях, при которых будет эксплуатироваться создаваемый образец. Т.е. у расчетного образца и образца, предполагаемого к эксплуатации, должен быть схожий градиент температур, определяемый по формуле: , а также температура на одном из концов образца (T1, T2), где Т1 и Т2 - температуры на концах образца [K], а l - длина образца [см]. Термо-ЭДС измеряют в интервале температур от температуры жидкого азота [78 К], включающего район температуры Кюри, до 273 К. Данное измерение возможно также проводить в интервале температур от температуры жидкого гелия [4.2 К], включающего район температуры Кюри, до 273 К. Далее рассчитывают величину S0 - величину термо-ЭДС, приходящуюся на единицу объема [мВ/К⋅см3], расчетного образца.

После этого из заготовки выбранного манганита по любому известному способу формируют образец с объемом, требуемым для создания заданной термо-ЭДС - S, при этом данный объем V находят по формуле:

V=S/S0 [см3],

где S - заданная термо-ЭДС [мВ/К];

S0 - величина термо-ЭДС, приходящаяся на единицу объема легированного манганита [мВ/К⋅см3].

Данный образец может быть сформирован известными способами, перечисленными выше (способом бестигельной зонной плавки или по керамической технологии).

Формирование расчетного и эксплуатируемого образцов способом бестигельной зонной плавки и керамической технологии может быть реализовано по технологиям, представленным в открытых источниках публикации, например Металловедение, Пикунов М.В., Десипри А.И. 1980; М.: «Металлургия», 1980, с. 131; Бородулин В.Н. и др. «Конструкционные и электротехнические материалы». - М.: Высшая Школа, 1990, 102 с.

Созданный образец с заранее заданной термо-ЭДС используется в космической технике, химической, пищевой или легкой промышленности для преобразования тепловой энергии в электрическую посредством подключения к потребителю тока через конечные точки созданного образца, эксплуатируемого при заданных температурах.

Способ создания образцов с заранее заданной термо-ЭДС, предназначенных для преобразования тепловой энергии в электрическую, основан на нижеследующем.

В магнитных полупроводниках из-за выигрыша в энергии s-d обмена существуют особые магнитнопримесные состояния - ферроны. Это ферромагнитные микрообласти около примесей, в которых локализованы носители заряда и кристаллическая решетка сжата. Ферроны достигают максимального размера при повышении температуры до температуры Кюри, а при дальнейшем поднятии температуры быстро разрушаются. Это разрушение ускоряется под действием магнитного поля. В сильно разбавленных составах Re1-xMexMnO3 с величиной x, близкой к 0.5, в легированных манганитах существуют антиферромагнитные СЕ-типа микрообласти с зарядово-орбитальным упорядочением, в которых кристаллическая решетка сильнее искажена, чем в матрице (Kanamori J.В. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids, 10 (1). 1959, pp. 87-98). Эти области разрушаются в районе температуры Нееля и это разрушение ускоряется под действием магнитного поля. Таким образом, легированные манганиты, имеющие химическую формулу Re1-xMexMnO3 (где Re - это редкоземельные элементы, Me - щелочноземельные металлы, а 0<х≤0.5), представляют собой антиферромагнитную А-типа матрицу, в которой располагаются ферромагнитные или антиферромагнитные CE-типа микрообласти с измененной кристаллической решеткой и повышенной концентрацией носителей заряда.

Электрический ток, текущий в образце из магнитного полупроводника при измерении термо-ЭДС, вызывает эффект Пельтье на границах антиферромагнитной СЕ-типа микрообласти или микрообласти ферронного типа, то есть разность температур ΔT, которая в свою очередь создает на ней термо-ЭДС S1. От каждой микрообласти происходит вклад (S1-S2)ΔT в термо-ЭДС всего образца. Здесь S2 – термо-ЭДС образца при отсутствии таких микрообластей. Этот вклад влияет на эффективное значение S всего образца. Это означает, что в легированных магнитных полупроводниках, к которым относятся манганиты, величина термо-ЭДС может быть значительно повышена по сравнению с чистыми за счет увеличения концентрации примеси или за счет увеличения объема образца. Если при этом в образце наблюдается гигантская отрицательная магнетотермо-ЭДС , то нанокластеры ферронного типа и зарядово-орбитально упорядоченные вносят основной вклад в термо-ЭДС всего образца.

Вышесказанное подтверждается результатами измерения термо-ЭДС легированного манганита Sm0.7Sr0.3MnO3 (температурная зависимость термо-ЭДС в разных магнитных полях для данного манганита представлена на фиг. 1 и 2).

На фиг. 1 показана температурная зависимость термо-ЭДС в разных магнитных полях для первого образца Sm0.7Sr0.3MnO3 с геометрическими размерами 11×2.5×3 см, где S – термо-ЭДС, мВ/К; Т - температура, K.

На фиг. 2 показана температурная зависимость термо-ЭДС в разных магнитных полях для второго образца Sm0.7Sr0.9MnO3 с геометрическими размерами 5×2.5×3 см, который был получен разделением первого образца на 2 части.

Обозначения на фиг. 1 и фиг. 2 означают следующее: S – термо-ЭДС, мВ/К; Т - температура, K.

Из фиг. 1 и 2 следует, что при уменьшении длины данного образца (т.е. и объема образца) примерно в 2,2 раза термо-ЭДС также уменьшается в ~ 2,2 раза.

На фигурах также видно, что в районе температуры Кюри, равной 87 K, термо-ЭДС достигает величины 18 мВ/К и выше нее быстро спадает. Магнитное поле в 13.23 кЭ понижает термо-ЭДС на ~50%, то есть ускоряет разрушение ферронов в районе точки Кюри. Это подтверждает, что термо-ЭДС вызвана в основном ферронами. Поэтому величина термо-ЭДС в этом манганите определяется количеством ферронов в образце и прямо пропорциональна его объему.

Тем самым становится возможным значительно повышать величину термо-ЭДС, увеличивая объем образца. Увеличив длину образца (а, следовательно, и объем) в 5 раз, можно получить образец Sm0.7Sr0.3MnO3 с рекордной величиной термо-ЭДС ~ 90 мВ/К. Образец с заданными размерами можно получить представленными выше известными способами, например способом бестигельной зонной плавки, или по керамической технологии, или сформировать из заготовки большего объема путем удаления ее части для получения образца требуемого объема.

Пример 1. Формирование образца легированного манганита Sm0.7Sr0.3MnO3 с параметрами термо-ЭДС 60 мВ/К

В результате способом бестигельной зонной плавки был получен расчетный образец выбранного легированного манганита Sm0.7Sr0.3MnO3 с размером 1,1×0,25×0,3 см, т.е. V=0,0825 см3.

У данного расчетного образца измеряли вольтметром термо-ЭДС при температурах на концах образца Т1=78 K и Т2=90 K (условия эксплуатации создаваемого образца). Было получено значение 17,5 мВ/К.

Откуда S0 - величина термо-ЭДС, приходящаяся на единицу объема легированного манганита Sm0.7Sr0.3MnO3, S0=17,5/0,0825=212,12 мВ/К⋅см3.

Таким образом, для получения легированного манганита Sm0.7Sr0.3MnO3 с заранее заданной термо-ЭДС 60 мВ/К был сформирован образец объемом V=S/S0=60/212,12=0,283 см3. Образец был сформирован способом бестигельной зонной плавки.

Пример 2. Формирование образца из легированного манганита La0.5CaO0.5MnO3 с параметрами термо-ЭДС 60 мВ/К

Посредством удаления излишек готовой имеющейся заготовки у данного легированного манганита был получен расчетный образец с размером 1,0×1,0×1,0=1 см3.

У данного расчетного образца измеряли вольтметром термо-ЭДС при температурах на концах образца Т1=50 K и Т2=65 K (условия эксплуатации создаваемого образца). Было получено значение 80 мВ/К, откуда S0=80 мВ/К⋅см3.

Таким образом, для получения легированного манганита La0.5Ca0.5MnO3 с заранее заданной термо-ЭДС 60 мВ/К был сформирован образец объемом V=S/S0=60/80=0,75 см3. Данный образец был сформирован по керамической технологии.

Пример 3. Формирование образца легированного манганита Gd0.5Sr0.5MnO3 с параметрами термо-ЭДС 60 мВ/К

Посредством удаления излишек готовой имеющейся заготовки у данного легированного манганита был получен расчетный образец с размером 1,0×1,0×1,0=1 см3.

У данного расчетного образца измеряли вольтметром термо-ЭДС при температурах на концах образца T1=50 K и Т2=30 K (условия эксплуатации создаваемого образца). Было получено значение 34 мВ/К, откуда S0=34 мВ/К⋅см3.

Таким образом, для получения легированного манганита Gd0.5Sr0.5MnO3 с заранее заданной термо-ЭДС 60 мВ/К был сформирован образец объемом V=S/S0=60/34=l,76 см3. Данный образец объемом 1,76 см3 был сформирован по керамической технологии.

Все вышеприведенные примеры показывают возможность осуществления данного изобретения и не ограничивают возможность осуществления настоящего изобретения. Заявляемый способ создания образцов с заранее заданной термо-ЭДС для легированных манганитов будет работать не только с вышеуказанными соединениями, показанными в примерах, но и со всеми соединениями, которые описываются формулой Re1-xMexMnO3, где Re - это редкоземельные элементы, Me - щелочноземельные металлы, при этом 0<x≤0.5, при этом Re может представлять собой один из следующих элементов: La, Sm, Gd, Sc, Се, Pr, Nd, Pm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, a Me - может представлять собой один из следующих элементов: Sr, Са, Ва.

Таким образом, заявляемый способ решает поставленную задачу - разработку способа создания образцов с заранее заданным термо-ЭДС из легированных манганитов. Данный способ позволяет получить легированные манганиты с заранее заданной термо-ЭДС, а также получить легированные манганиты с большой величиной термо-ЭДС, что в свою очередь позволит получать электропитание автономно, например, для автономной работы спутника.


СПОСОБ СОЗДАНИЯ ОБРАЗЦОВ С ЗАРАНЕЕ ЗАДАННОЙ ТЕРМО-ЭДС, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ
СПОСОБ СОЗДАНИЯ ОБРАЗЦОВ С ЗАРАНЕЕ ЗАДАННОЙ ТЕРМО-ЭДС, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ
СПОСОБ СОЗДАНИЯ ОБРАЗЦОВ С ЗАРАНЕЕ ЗАДАННОЙ ТЕРМО-ЭДС, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 157.
29.12.2017
№217.015.fc87

Производные 5-аминоизоксазола - конформационно-жесткие аналоги γ-аминомасляной кислоты и способ их получения

Изобретение относится к 5-аминоизоксазол-3-фосфоновой кислоте общей формулы 1, которая является конформационно-жестким аналогом γ-аминомасляной кислоты (ГАМК). Способ получения 5-аминоизоксазол-3-фосфоновой кислоты осуществляют путем добавления к диэтиловому эфиру винилфосфоновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002638530
Дата охранного документа: 14.12.2017
29.12.2017
№217.015.fd83

Композиция для получения нанокомпозитов с перестраиваемой полимерной матрицей

Изобретение относится к композиции для получения нанокомпозитов с перестраиваемой полимерной матрицей, которые могут быть использованы в современной высокотехнологичной промышленности, начиная от конструкционных материалов нового поколения до высокопроизводительных солнечных батарей, матриц для...
Тип: Изобретение
Номер охранного документа: 0002638169
Дата охранного документа: 12.12.2017
29.12.2017
№217.015.fde4

Способ нанофильтрационного разделения жидких органических смесей

Изобретение относится к способу нанофильтрационного разделения жидких органических смесей, в частности к отделению крупных молекул органических веществ от органических растворителей с использованием мембран, и может быть использовано в химической и нефтехимической промышленности, в частности в...
Тип: Изобретение
Номер охранного документа: 0002638661
Дата охранного документа: 15.12.2017
19.01.2018
№218.015.ff6e

Способ измерения характеристик деформируемости эритроцитов (варианты)

Группа изобретений относится к медицине, а именно к лабораторной диагностике и может быть использована для измерения характеристик деформируемости эритроцитов. Для этого проводят видеозапись и обработку дифракционной картины, возникающей при рассеянии лазерного пучка на разбавленной суспензии...
Тип: Изобретение
Номер охранного документа: 0002629594
Дата охранного документа: 30.08.2017
19.01.2018
№218.015.ff75

Способ разрушения ледяного покрова

Изобретение относится к проведению предупредительных работ для предотвращения ледяного заторообразования на участках рек и может быть использовано для разупрочнения ледяного покрова, в частности, в местах вблизи гидротехнических сооружений: плотин, дамб, мостов и т.п. Способ может быть также...
Тип: Изобретение
Номер охранного документа: 0002629569
Дата охранного документа: 30.08.2017
19.01.2018
№218.015.ffbd

Устройство для изготовления периодических структур методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны

Изобретение относится к области литографии и касается устройства для изготовления периодических микроструктур методом лазерной интерференционной литографии. Устройство включает в себя лазерный источник излучения, щелевую диафрагму, расширитель пучка и держатель образца с закрепленным на нем...
Тип: Изобретение
Номер охранного документа: 0002629542
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00a3

Способ получения пористого координационного полимера mof-177

Изобретение относится к способу получения пористых координационных полимеров структуры MOF-177. Способ включает смешение соли - ацетата цинка и 1,3,5-трифенилбензол-p,p',p''-трикарбоновой кислоты, взятых в массовом соотношении 2,5-4,5:1, в присутствии растворителя, в количестве, достаточном для...
Тип: Изобретение
Номер охранного документа: 0002629361
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00a7

Спиро[2.3]гексановые аминокислоты - конформационно-жесткие аналоги γ-аминомасляной кислоты - и способы их получения

Изобретение относится к 5-аминоспиро[2.3]гексан-1-фосфоновой кислоте указанной ниже формулы, которая является конформационно-жестким аналогом γ-аминомасляной кислоты и обладает психотропным действием. Изобретение относится также к способу получения 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты....
Тип: Изобретение
Номер охранного документа: 0002629357
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0268

Способ получения мелкокристаллического алюмината магния

Изобретение относится к области синтеза мелкокристаллического алюмината магния, используемого в качестве сырья для изготовления монокристаллов и светопропускающей алюмомагниевой керамики. Способ включает обработку в автоклаве паром воды исходной смеси, включающей взятые в мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002630112
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0367

Моноклональное антитело, связывающееся с гликопротеином вируса эбола, фрагменты днк, кодирующие указанное антитело, и антигенсвязывающий фрагмент

Изобретение относится к области биотехнологии и биохимии, а именно к моноклональному антителу, селективно связывающему гликопротеин вируса Эбола с константой диссоциации комплекса 2,6⋅10 М, а также изолированному фрагменту ДНК, кодирующему участки легкой и тяжелой цепей указанного антитела, и...
Тип: Изобретение
Номер охранного документа: 0002630304
Дата охранного документа: 06.09.2017
+ добавить свой РИД