×
25.08.2017
217.015.b34b

Результат интеллектуальной деятельности: Композиционный материал на основе нитинола

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, преимущественно к композиционным материалам на основе нитинола, и предназначено для изготовления деталей микромашин и механизмов, медицинских инструментов. Композиционный материал на основе нитинола содержит, ат. %: Cu - 5-10, Zr - 5-10, Ti - 36-44, Ni - 36-44 и по меньшей мере легирующий один элемент, выбранный из кобальта не меньше 5, иттрия не меньше 2, ниобия не меньше 5 и бора не меньше 1, остальное. Материал имеет двухфазную структуру, состоящую из кристаллической матричной фазы нитинола и аморфной фазы, расположенной по границам зерен матричной фазы. Получают материал диаметром до 5 мм с высокой прочностью и пластичностью, проявляющий эффект суперэластичности. 12 ил., 4 пр.

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе нитинола.

Одним из перспективных конструкционных материалов являются композиционные материалы на основе нитинола. Сплав сам по себе не обладает высокими показателями прочности, однако за счет ПНП (пластичность, наведенная превращением) эффекта он обладает очень высокими показателями пластичности. Также сплавы на основе нитинола проявляют эффект памяти формы и сверхупругости, что позволяет использовать данные сплавы в специфичных областях, таких как медицина. Создание композиционного материала на основе нитинола с повышенными показателями прочности, достигаемыми за счет армирования матрицы нитинола частицами аморфной фазы, приведет к увеличению уровня прочности материала, при этом пластичность нового материала также будет оставаться на высоком уровне (в сравнении с полностью аморфным материалом). В настоящем патенте предлагается способ получения композиционного материала на основе нитинола с армирующими аморфными частицами.

В патентах ЕР 0526527 А1 (опубл. 17.10.1991), ЕР 0714673 А2 (опубл. 05.06.1996) и WO 9426337 А1 (опубл. 24.11.1994) описан метод получения направляющей проволоки и других внутрителесных медицинских устройств и инструментов из сплава Ni-Ti с эффектом памяти формы. В данном документе в состав сплава добавляют большое количество ниобия (больше 15 ат. %). Благодаря добавке ниобия удалось значительно увеличить прочностные свойства сплава, достичь более точного отклика изделия при кручении и одновременно сохранить уникальные эффекты памяти формы и сверхупругости.

В патенте ЕР 1795227 А1 (опубл. 13.06.2007) показаны возможности использования сплавов на основе системы Ni-Ti с эффектом памяти формы для изготовления биосовместимых устройств для имплантации, в том числе с движущимися элементами. Данные устройства должны отвечать ряду требований, таких как: малые размеры, биосовместимость, герметичность (проникновение жидкости в устройство приведет к его поломке и может нанести серьезный вред здоровью), длительный срок службы (не менее 100 лет). Сплавы группы нитинолов подходят под все вышеуказанные требования.

Наиболее близкие способы получения материалов на основе нитинола описаны в нижеследующих документах.

В патенте WO 9527092 А1 (опубл. 12.10.1995) предлагается изготовление сплава с добавкой ниобия, имеющего следующую формулу: Nix-Tiy-Nbz, где х/y=0.8-1.2, z=4-14 атомных процентов. Данный сплав продемонстрировал повышенную прочность по сравнению с двойными сплавами с эффектом сверхупругости. Недостатком данного изобретения является низкая прочность материала по сравнению с предлагаемым композиционным материалом.

В патенте US 2014255246 А1 (опубл. 11.09.2014) описан метод получения направляющей проволоки и других внутрителесных медицинских устройств и инструментов из сплава Ni-Ti-Nb с эффектом памяти формы. В отличие от предыдущего патента в этом документе авторы добавляют в состав сплава больше ниобия (больше 15 ат. %). Полученный сплав продемонстрировал хорошие показатели, высокую точность отклика изделия при кручении и одновременно сохранил уникальный эффект памяти формы и сверхупругости. Недостатком данного изобретения является низкая прочность материала по сравнению с предлагаемым композиционным материалом.

Основным отличием данного изобретения является повышенное содержание дополнительных легирующих элементов, способствующих повышению эксплуатационных свойств композиционного материала за счет наличия в структуре аморфной фазы.

Техническим результатом данного изобретения является получение композиционного материала на основе нитинола (в ат. %) Nia-Tia-Cub-Zrb-ЛЭс, где а=36-44, b=5-10, с = остальное, ЛЭ - дополнительные легирующие элементы Со, Y, Nb, В с повышенным уровнем эксплуатационных свойств и эффектом памяти формы диаметром до 5 мм.

Технический результат достигается следующим образом: композиционный материал на основе нитинола, отличающийся тем, что он содержит медь, цирконий, титан, никель и по меньшей мере один легирующий элемент, выбранный из кобальта, иттрия, ниобия и бора, остальное, при следующем соотношении компонентов, ат. %

Cu - 5-10

Zr - 5-10

Ti - 36-44

Ni - 36-44

по меньшей мере легирующий один элемент, выбранный из кобальта <5, иттрия <2, ниобия <5 и бора <1, остальное,

при этом он имеет двухфазную структуру, состоящую из кристаллической матричной фазы нитинола и аморфной фазы, расположенной по границам зерен матричной фазы.

Сущность изобретения поясняется чертежами, на которых изображено:

На фиг. 1 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 2 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 3 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 4 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 5 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 6 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 7 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 8 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 9 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 10 - Рентгенограмма образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1;

На фиг. 11 - Микроструктура образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1;

На фиг. 12 - Кривая сжатия образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1.

Осуществление изобретения

Для решения поставленной задачи предлагается следующая технология: чистые (99,9% чистоты) металлы для сплава состава (в ат. %) Nia-Tia-Cub-Zrb-ЛЭс, где а=36-44, b=5-10, с = остальное, где ЛЭ - дополнительные легирующие элементы Со, Y, Nb, В сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружаются шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводят в атмосфере аргона при напряжении 200 В. Последовательно переплавляют все шихтовые материалы, переворачивая полученные слитки и проводя повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляем в вакуумной индукционной печи. Навеску располагаем в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляем в индукционной печи. После достижения высокого вакуума осуществляем расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подается аргон и расплав впрыскивается в медную изложницу с диаметром отверстия 1-5 мм.

Исследование структуры композиционных материалов проводят с использованием рентгеноструктурного анализа на образцах толщиной 1 мм, вырезанных из поперечного сечения отливок, а также методом сканирующей электронной микроскопии. Оценку механических свойств на сжатие проводят на цилиндрических образцах с соотношением высоты к диаметру 1:1.

Пример 1

Сплав №1 был получен следующим образом:

Состав сплава (ат. %):

- Ti 42

- Ni 39

- Cu 9

- Zr 10

Для приготовления сплава использовались шихтовые материалы чистых металлов (99,99 масс. % чистоты). Плавление шихтовых материалов проводили в атмосфере аргона в дуговой печи при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 1 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 2).

Механические испытания (фиг. 3) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2150 МПа, а пластичность составила 18,3%.

Пример 2

Сплав №2 был получен следующим образом:

Состав сплава (ат. %):

- Ti 42

- Ni 38

- Cu 7

- Zr 10

- Со 2

- Y 0.5

- В 0.5

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 4 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 5).

Механические испытания (фиг. 6) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2140 МПа, а пластичность составила 12,4%.

Пример 3

Сплав №3 был получен следующим образом:

Состав сплава (ат. %):

- Ti 40

- Ni 39.5

- Cu 8

- Zr 10

- Со 2

- Y 0.5

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов, которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 7 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 8).

Механические испытания (фиг. 9) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2620 МПа, а пластичность составила 25%.

Пример 4

Сплав №4 был получен следующим образом:

Состав сплава (ат. %):

- Ti 40.5

- Ni 40

- Cu 8

- Zr 8

- Со 2

- Y 0.5

- Nb 1

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов, которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу.

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 10 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 11).

Механические испытания (фиг. 12) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2430 МПа, а пластичность составила 23,1%.


Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Источник поступления информации: Роспатент

Показаны записи 311-320 из 323.
23.04.2023
№223.018.51ab

Способ получения модифицированных наночастиц магнетита, легированных гадолинием

Изобретение относится к области неорганической химии, а именно к способу получения модифицированных наночастиц магнетита, легированных гадолинием. Данные наночастиц могут быть использованы, например, в качестве двойных контрастных агентов для МРТ-диагностики. Способ получения модифицированных...
Тип: Изобретение
Номер охранного документа: 0002738118
Дата охранного документа: 08.12.2020
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
23.04.2023
№223.018.5219

Способ комбинаторного получения новых композиций материалов в многокомпонентной системе

Изобретение относится к области металлургии, в частности к способу комбинаторного получения композиций материалов в многокомпонентной системе. Может использоваться для построения фазовых диаграмм и поиска новых интерметаллических соединений в многокомпонентных системах. Из тугоплавкого...
Тип: Изобретение
Номер охранного документа: 0002745223
Дата охранного документа: 22.03.2021
24.04.2023
№223.018.5294

Способ получения монооксида углерода из лигнина гидролизного под действием co

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО в реактор 900 ч, в присутствии железного или кобальтового катализатора, представляющего...
Тип: Изобретение
Номер охранного документа: 0002741006
Дата охранного документа: 22.01.2021
14.05.2023
№223.018.5654

Способ переработки минерального сырья, содержащего сульфиды металлов

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и промпродуктов обогащения, богатых руд, а именно к выщелачиванию металлов из сульфидного минерального сырья....
Тип: Изобретение
Номер охранного документа: 0002739492
Дата охранного документа: 24.12.2020
15.05.2023
№223.018.5739

Способ синтеза нанокомпозитов nicocu/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре...
Тип: Изобретение
Номер охранного документа: 0002770599
Дата охранного документа: 18.04.2022
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
15.05.2023
№223.018.5822

Способ растворения сульфидов металлов с использованием озона и пероксида водорода

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и продуктов обогащения, богатых руд. Способ растворения сульфидов металлов с использованием озона и пероксида...
Тип: Изобретение
Номер охранного документа: 0002768928
Дата охранного документа: 25.03.2022
16.05.2023
№223.018.5e79

Способ получения поликристаллических алмазных пленок

Изобретение относится к области материаловедения и может быть использовано при изготовлении теплоотводов, детекторов ионизирующего излучения, инфракрасных окон, упрочняющих и износостойких покрытий на деталях и режущем инструменте. Сначала готовят суспензию, содержащую наноалмазные порошки, и...
Тип: Изобретение
Номер охранного документа: 0002750234
Дата охранного документа: 24.06.2021
16.05.2023
№223.018.602d

Лазер с устройствами юстировки

Изобретение относится к области квантовой электроники и лазерной техники, в частности к твердотельным ВКР-лазерам, и может быть применено в нелинейной оптике, аналитической спектроскопии, оптическом приборостроении, медицине, экологии, фотодинамической терапии. Лазер с источником накачки,...
Тип: Изобретение
Номер охранного документа: 0002749046
Дата охранного документа: 03.06.2021
Показаны записи 181-183 из 183.
18.10.2019
№219.017.d7d5

Магнитомягкий нанокристаллический материал на основе железа

Изобретение относится к области металлургии, в частности к аморфным и нанокристаллическим магнитомягким сплавам на основе железа, получаемым в виде тонкой ленты литьем расплава на поверхность охлаждающего тела и его скоростной закалкой и используемым, в основном, для изготовления из ленты...
Тип: Изобретение
Номер охранного документа: 0002703319
Дата охранного документа: 16.10.2019
20.05.2023
№223.018.6572

Порошковый алюминиевый материал

Изобретение относится к области металлургии, а именно к составу жаропрочного сплава на основе алюминия и порошку из него, для использования при изготовлении деталей методами аддитивных технологий. Порошковый сплав на основе алюминия содержит, мас.%: медь 6,0-7,0, магний 0,2-0,8, марганец...
Тип: Изобретение
Номер охранного документа: 0002741022
Дата охранного документа: 22.01.2021
21.05.2023
№223.018.68be

Магнитомягкий аморфный материал на основе fe-ni в виде ленты

Изобретение относится к области металлургии, в частности к аморфным магнитомягким сплавам на основе системы Fe-Ni, полученным в виде ленты в процессе закалки расплава на вращающийся медный диск, и может быть использовано в электротехнических устройствах, например, в магнитопроводах и...
Тип: Изобретение
Номер охранного документа: 0002794652
Дата охранного документа: 24.04.2023
+ добавить свой РИД