×
25.08.2017
217.015.b34b

Результат интеллектуальной деятельности: Композиционный материал на основе нитинола

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, преимущественно к композиционным материалам на основе нитинола, и предназначено для изготовления деталей микромашин и механизмов, медицинских инструментов. Композиционный материал на основе нитинола содержит, ат. %: Cu - 5-10, Zr - 5-10, Ti - 36-44, Ni - 36-44 и по меньшей мере легирующий один элемент, выбранный из кобальта не меньше 5, иттрия не меньше 2, ниобия не меньше 5 и бора не меньше 1, остальное. Материал имеет двухфазную структуру, состоящую из кристаллической матричной фазы нитинола и аморфной фазы, расположенной по границам зерен матричной фазы. Получают материал диаметром до 5 мм с высокой прочностью и пластичностью, проявляющий эффект суперэластичности. 12 ил., 4 пр.

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе нитинола.

Одним из перспективных конструкционных материалов являются композиционные материалы на основе нитинола. Сплав сам по себе не обладает высокими показателями прочности, однако за счет ПНП (пластичность, наведенная превращением) эффекта он обладает очень высокими показателями пластичности. Также сплавы на основе нитинола проявляют эффект памяти формы и сверхупругости, что позволяет использовать данные сплавы в специфичных областях, таких как медицина. Создание композиционного материала на основе нитинола с повышенными показателями прочности, достигаемыми за счет армирования матрицы нитинола частицами аморфной фазы, приведет к увеличению уровня прочности материала, при этом пластичность нового материала также будет оставаться на высоком уровне (в сравнении с полностью аморфным материалом). В настоящем патенте предлагается способ получения композиционного материала на основе нитинола с армирующими аморфными частицами.

В патентах ЕР 0526527 А1 (опубл. 17.10.1991), ЕР 0714673 А2 (опубл. 05.06.1996) и WO 9426337 А1 (опубл. 24.11.1994) описан метод получения направляющей проволоки и других внутрителесных медицинских устройств и инструментов из сплава Ni-Ti с эффектом памяти формы. В данном документе в состав сплава добавляют большое количество ниобия (больше 15 ат. %). Благодаря добавке ниобия удалось значительно увеличить прочностные свойства сплава, достичь более точного отклика изделия при кручении и одновременно сохранить уникальные эффекты памяти формы и сверхупругости.

В патенте ЕР 1795227 А1 (опубл. 13.06.2007) показаны возможности использования сплавов на основе системы Ni-Ti с эффектом памяти формы для изготовления биосовместимых устройств для имплантации, в том числе с движущимися элементами. Данные устройства должны отвечать ряду требований, таких как: малые размеры, биосовместимость, герметичность (проникновение жидкости в устройство приведет к его поломке и может нанести серьезный вред здоровью), длительный срок службы (не менее 100 лет). Сплавы группы нитинолов подходят под все вышеуказанные требования.

Наиболее близкие способы получения материалов на основе нитинола описаны в нижеследующих документах.

В патенте WO 9527092 А1 (опубл. 12.10.1995) предлагается изготовление сплава с добавкой ниобия, имеющего следующую формулу: Nix-Tiy-Nbz, где х/y=0.8-1.2, z=4-14 атомных процентов. Данный сплав продемонстрировал повышенную прочность по сравнению с двойными сплавами с эффектом сверхупругости. Недостатком данного изобретения является низкая прочность материала по сравнению с предлагаемым композиционным материалом.

В патенте US 2014255246 А1 (опубл. 11.09.2014) описан метод получения направляющей проволоки и других внутрителесных медицинских устройств и инструментов из сплава Ni-Ti-Nb с эффектом памяти формы. В отличие от предыдущего патента в этом документе авторы добавляют в состав сплава больше ниобия (больше 15 ат. %). Полученный сплав продемонстрировал хорошие показатели, высокую точность отклика изделия при кручении и одновременно сохранил уникальный эффект памяти формы и сверхупругости. Недостатком данного изобретения является низкая прочность материала по сравнению с предлагаемым композиционным материалом.

Основным отличием данного изобретения является повышенное содержание дополнительных легирующих элементов, способствующих повышению эксплуатационных свойств композиционного материала за счет наличия в структуре аморфной фазы.

Техническим результатом данного изобретения является получение композиционного материала на основе нитинола (в ат. %) Nia-Tia-Cub-Zrb-ЛЭс, где а=36-44, b=5-10, с = остальное, ЛЭ - дополнительные легирующие элементы Со, Y, Nb, В с повышенным уровнем эксплуатационных свойств и эффектом памяти формы диаметром до 5 мм.

Технический результат достигается следующим образом: композиционный материал на основе нитинола, отличающийся тем, что он содержит медь, цирконий, титан, никель и по меньшей мере один легирующий элемент, выбранный из кобальта, иттрия, ниобия и бора, остальное, при следующем соотношении компонентов, ат. %

Cu - 5-10

Zr - 5-10

Ti - 36-44

Ni - 36-44

по меньшей мере легирующий один элемент, выбранный из кобальта <5, иттрия <2, ниобия <5 и бора <1, остальное,

при этом он имеет двухфазную структуру, состоящую из кристаллической матричной фазы нитинола и аморфной фазы, расположенной по границам зерен матричной фазы.

Сущность изобретения поясняется чертежами, на которых изображено:

На фиг. 1 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 2 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 3 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni39Cu9Zr10;

На фиг. 4 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 5 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 6 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni38Cu7Zr10Co2Y0.5B0.5;

На фиг. 7 - Рентгенограмма образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 8 - Микроструктура образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 9 - Кривая сжатия образца диаметром 3 мм из сплава Ti42Ni39.5Cu8Zr10Co2Y0.5;

На фиг. 10 - Рентгенограмма образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1;

На фиг. 11 - Микроструктура образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1;

На фиг. 12 - Кривая сжатия образца диаметром 3 мм из сплава Ti40.5Ni40Cu8Zr8Co2Y0.5Nb1.

Осуществление изобретения

Для решения поставленной задачи предлагается следующая технология: чистые (99,9% чистоты) металлы для сплава состава (в ат. %) Nia-Tia-Cub-Zrb-ЛЭс, где а=36-44, b=5-10, с = остальное, где ЛЭ - дополнительные легирующие элементы Со, Y, Nb, В сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружаются шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводят в атмосфере аргона при напряжении 200 В. Последовательно переплавляют все шихтовые материалы, переворачивая полученные слитки и проводя повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляем в вакуумной индукционной печи. Навеску располагаем в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляем в индукционной печи. После достижения высокого вакуума осуществляем расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подается аргон и расплав впрыскивается в медную изложницу с диаметром отверстия 1-5 мм.

Исследование структуры композиционных материалов проводят с использованием рентгеноструктурного анализа на образцах толщиной 1 мм, вырезанных из поперечного сечения отливок, а также методом сканирующей электронной микроскопии. Оценку механических свойств на сжатие проводят на цилиндрических образцах с соотношением высоты к диаметру 1:1.

Пример 1

Сплав №1 был получен следующим образом:

Состав сплава (ат. %):

- Ti 42

- Ni 39

- Cu 9

- Zr 10

Для приготовления сплава использовались шихтовые материалы чистых металлов (99,99 масс. % чистоты). Плавление шихтовых материалов проводили в атмосфере аргона в дуговой печи при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 1 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 2).

Механические испытания (фиг. 3) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2150 МПа, а пластичность составила 18,3%.

Пример 2

Сплав №2 был получен следующим образом:

Состав сплава (ат. %):

- Ti 42

- Ni 38

- Cu 7

- Zr 10

- Со 2

- Y 0.5

- В 0.5

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 4 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 5).

Механические испытания (фиг. 6) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2140 МПа, а пластичность составила 12,4%.

Пример 3

Сплав №3 был получен следующим образом:

Состав сплава (ат. %):

- Ti 40

- Ni 39.5

- Cu 8

- Zr 10

- Со 2

- Y 0.5

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов, которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 7 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 8).

Механические испытания (фиг. 9) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2620 МПа, а пластичность составила 25%.

Пример 4

Сплав №4 был получен следующим образом:

Состав сплава (ат. %):

- Ti 40.5

- Ni 40

- Cu 8

- Zr 8

- Со 2

- Y 0.5

- Nb 1

Для приготовления сплава использовались шихтовые материалы чистых (99,99 масс. % чистоты) металлов, которые сплавляются в вакуумной электродуговой печи на медном водоохлаждаемом поду. На под загружались шихтовые материалы всех сплавов в отдельные зоны. Кроме того, на поду располагался геттер - чистый титан для поглощения кислорода. Плавление шихтовых материалов проводили в атмосфере аргона при напряжении 200 В. Последовательно переплавляли все шихтовые материалы, переворачивали полученные слитки и проводили повторный переплав (таким образом, после четырех переплавов получили однородные по химическому составу слитки). Выплавленные слитки шли на переплав с целью получения образцов с композиционной структурой.

Образцы композиционных материалов получали в результате быстрого охлаждения в массивную медную изложницу. Переплав полученных в электродуговой печи слитков осуществляли в вакуумной индукционной печи. Навеску располагали в кварцевой ампуле с отверстием 1 мм на конце. После этого ампулу закрепляли в индукционной печи и вакуумировали камеру. После достижения высокого вакуума осуществляли расплавление при напряжении 15 В. После расплавления в кварцевую ампулу подавался аргон и расплав впрыскивался в медную изложницу.

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 10 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из рентгенограммы, структура полученного материала двухфазная. На рентгенограмме присутствуют пики, характерные для фазы Ni-Ti. Данная фаза является матричной в сплаве. Размытие главного пика (в области 40 градусов) говорит о наличии аморфной фазы в структуре сплава.

В микроструктуре сплава присутствует кристаллическая матрица (темные участки) и аморфная фаза (светлые участки), сосредоточенная по границам зерен матричной фазы нитинола (фиг. 11).

Механические испытания (фиг. 12) сплава показали, что прочность полученного сплава значительно превышает прочность двойного сплава нитинола и при этом значение пластичности композиционного материала значительно выше значения пластичности любого полностью аморфного сплава. Предел прочности полученного композиционного материала достиг значения 2430 МПа, а пластичность составила 23,1%.


Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Композиционный материал на основе нитинола
Источник поступления информации: Роспатент

Показаны записи 211-220 из 323.
06.07.2018
№218.016.6d03

Способ получения синтез-газа из co

Изобретение относится к технологии газификации угля и может быть использовано для получения синтез-газа. Способ получения синтез-газа заключается в следующем. На уголь методом пропитки наносят каталитически активный металл – железо. Проводят углекислотную конверсию в проточном реакторе при...
Тип: Изобретение
Номер охранного документа: 0002660139
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6e1b

Способ получения поликристаллических ферритов-гранатов

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим...
Тип: Изобретение
Номер охранного документа: 0002660493
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6ead

Литейный алюминиево-кальциевый сплав

Изобретение относится к области металлургии. Алюминиевый сплав содержит 5.4-6,4% кальция, 0,3-0,6% кремния и 0,8-1,2% железа. В виде отливок, не требующих термической обработки, сплав обладает следующими механическими свойствами на растяжение: временное сопротивление (σ) не менее 180 МПа,...
Тип: Изобретение
Номер охранного документа: 0002660492
Дата охранного документа: 06.07.2018
25.08.2018
№218.016.7eb1

Способ генерации терагерцовых импульсов на основе термоупругого эффекта

Использование: для генерации терагерцовых импульсов на основе термоупругого эффекта. Сущность изобретения заключается в том, что получают акустические колебания путем воздействия лазерным импульсом на пару металлов, один из которых, подвергаемый воздействию лазерного излучения, представляет...
Тип: Изобретение
Номер охранного документа: 0002664967
Дата охранного документа: 24.08.2018
25.08.2018
№218.016.7f6e

Композиционный материал с прочной металлической матрицей и упрочняющими частицами карбида титана и способ его изготовления

Группа изобретений относится к получению композиционного материала, содержащего металлическую матрицу из алюминиевого сплава и упрочняющие частицы карбида титана. Ведут механическое легирование смеси, содержащей порошок титана и наноалмазы при соотношении, равном (47,867÷52) : (12,0107), и...
Тип: Изобретение
Номер охранного документа: 0002664747
Дата охранного документа: 22.08.2018
25.08.2018
№218.016.7f8f

Способ обработки магниевого сплава системы mg-al-zn методом ротационной ковки

Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов, и может быть использовано для получения изделий, применяемых в качестве конструкционных материалов в авиации, ракетной технике, транспорте и т.д. Способ обработки магниевого...
Тип: Изобретение
Номер охранного документа: 0002664744
Дата охранного документа: 22.08.2018
25.08.2018
№218.016.7f92

Способ получения ферритовых изделий

Изобретение относится к получению ферритовых изделий. Способ включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и...
Тип: Изобретение
Номер охранного документа: 0002664745
Дата охранного документа: 22.08.2018
28.08.2018
№218.016.7fc4

Способ определения макрорельефа поверхности и внутренних включений объекта и устройство для его реализации

Изобретение относится к неразрушающим методам исследования твердых материалов и может быть использовано для контроля заданных параметров объектов и определения их физических характеристик. Предлагается способ определения макрорельефа поверхности и внутренних включений, дефектов объекта, и...
Тип: Изобретение
Номер охранного документа: 0002664933
Дата охранного документа: 23.08.2018
28.08.2018
№218.016.7fe2

Способ получения трехмерных изделий сложной формы из высоковязких полимеров и устройство для его осуществления (варианты)

Изобретение относится к области аддитивных технологий для получения трехмерных изделий сложной формы, например, для создания трехмерного принтера, и предназначено для быстрого прототипирования или получения малых серий изделий, в общем, и транспортном машиностроении, авиационной технике или...
Тип: Изобретение
Номер охранного документа: 0002664962
Дата охранного документа: 23.08.2018
28.08.2018
№218.016.7fec

Способ изготовления фильтров для ик-диапазона

Изобретение относится к области оптического приборостроения и касается способа изготовления фильтров для ИК-диапазона. Способ заключается в выращивании из смеси бинарных компонент ZnSe и ZnS кристаллического слитка твердого раствора с перепадом температуры между зонами испарения и...
Тип: Изобретение
Номер охранного документа: 0002664912
Дата охранного документа: 23.08.2018
Показаны записи 181-183 из 183.
18.10.2019
№219.017.d7d5

Магнитомягкий нанокристаллический материал на основе железа

Изобретение относится к области металлургии, в частности к аморфным и нанокристаллическим магнитомягким сплавам на основе железа, получаемым в виде тонкой ленты литьем расплава на поверхность охлаждающего тела и его скоростной закалкой и используемым, в основном, для изготовления из ленты...
Тип: Изобретение
Номер охранного документа: 0002703319
Дата охранного документа: 16.10.2019
20.05.2023
№223.018.6572

Порошковый алюминиевый материал

Изобретение относится к области металлургии, а именно к составу жаропрочного сплава на основе алюминия и порошку из него, для использования при изготовлении деталей методами аддитивных технологий. Порошковый сплав на основе алюминия содержит, мас.%: медь 6,0-7,0, магний 0,2-0,8, марганец...
Тип: Изобретение
Номер охранного документа: 0002741022
Дата охранного документа: 22.01.2021
21.05.2023
№223.018.68be

Магнитомягкий аморфный материал на основе fe-ni в виде ленты

Изобретение относится к области металлургии, в частности к аморфным магнитомягким сплавам на основе системы Fe-Ni, полученным в виде ленты в процессе закалки расплава на вращающийся медный диск, и может быть использовано в электротехнических устройствах, например, в магнитопроводах и...
Тип: Изобретение
Номер охранного документа: 0002794652
Дата охранного документа: 24.04.2023
+ добавить свой РИД