×
25.08.2017
217.015.b230

Результат интеллектуальной деятельности: СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении механизированной сваркой металлоконструкций ответственного назначения. С основной сварочной проволокой применяют дополнительную присадочную проволоку, содержащую оболочку, наполненную наноструктурированными порошками вольфрама, или молибдена, или оксида алюминия. Дополнительную присадочную проволоку подают в хвостовую часть сварочной ванны. Наноструктурированные порошки из расплавленной присадочной проволоки попадают без расплавления в поток перегретого жидкого металла, направленного из-под дуги в хвостовую часть, перемешиваются в нем и служат дополнительными центрами кристаллизации металла шва. Способ обеспечивает повышение механических свойств и коррозионной стойкости сварных соединений за счет управления структурой наплавленного металла. 9 ил.

Изобретение относится к области дуговой сварки, а именно к способам получения сварных соединений при изготовлении металлоконструкций ответственного назначения.

Известен способ дуговой сварки, в котором дополнительно вводят присадочную проволоку в хвостовую часть расплавленной ванны. В результате происходит меньшее тепловложение, уменьшается термический цикл сварки, уменьшается количество проходов и сварочные деформации (П.Л. Жилин, Б.П. Конищев, С.А. Лебедев. Исследование увеличения производительности и качества процесса сварки в CO2 с дополнительной холодной присадкой. // Труды Нижегородского государственного технического университета им. Р.Е. Алексеева. - 2014. - №5. - С. 381-387).

Недостатком способа является то, что в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на формирование структуры наплавленного металла.

Известен способ дуговой сварки (Авторское свидетельство №525511), в котором осуществляют введение дополнительной присадочной проволоки в хвостовую часть сварочной ванны. В результате повышается стойкость металла шва против образования холодных и горячих трещин.

Недостатком способа является то, что в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на механические свойства сварных соединений.

Прототипом способа выбран способ механизированной сварки плавящимся электродом в среде защитных газов, в котором осуществляют введение присадочной проволоки в хвостовую часть сварочной ванны. В результате происходит уменьшение перегрева расплава ванны и металла зоны термического влияния. Нагрев и плавление присадочной проволоки происходит за счет теплоты, переносимой потоками жидкого металла (Лащенко Г.И. Способы дуговой сварки стали плавящимся электродом. - К.: «Екотехнология», 2006. - 384 с.).

Недостатки способа - в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на формирование структуры наплавленного металла и механические свойства сварных соединений.

Задача изобретения - повышение механических свойств и коррозионной стойкости сварных соединений за счет управления структурой наплавленного металла.

Поставленная задача достигается тем, что в способе механизированной сварки плавящимся электродом в среде защитных газов дополнительно к основной сварочной проволоке, разогретой источником питания, применяют присадочную проволоку, выполненную по технологии изготовления порошковой проволоки, в состав сердечника которой входят наноструктурированные порошки вольфрама, молибдена или оксида алюминия. Присадочную проволоку подают в хвостовую часть сварочной ванны. Присадочная проволока плавится в потоке перегретого жидкого металла сварочной ванны, направленного из-под дуги в хвостовую часть. Наноструктурированные порошки из расплавленной присадочной проволоки попадают в хвостовую часть сварочной ванны, не проходят дуговой промежуток, т.е. практически без потерь переходят в жидкий металл сварочной ванны, перемешиваются в ней и служат дополнительными центрами кристаллизации при образовании зерна микроструктуры наплавленного металла - модифицируют структуру наплавленного металла шва. Они не расплавляются в жидкой сварочной ванне в связи с их высокой температурой плавления. Увеличение количества центров кристаллизации в жидкой сварочной ванне приводит к образованию мелкодисперсной, однородной микроструктуры сварного соединения и позволяет активно управлять структурой наплавленного металла и механическими свойствами сварного соединения.

На фиг. 1 представлена схема способа механизированной сварки плавящимся электродом в среде защитных газов с введением присадочной проволоки в хвостовую часть сварочной ванны 1 - основная сварочная проволока, 2 - источник питания, 3 - присадочная проволока, 4 - хвостовая часть сварочной ванны, 5 - перегретый жидкий металл сварочной ванны.

На фиг. 2 представлена длина дендритов: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 1,5 мкм, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 1 мкм, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 0,9 мкм, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена 1 мкм.

На фиг. 3 представлена ширина дендритов: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 21 мкм, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 11 мкм, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия 7 мкм, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 12 мкм.

На фиг. 4 представлено временное сопротивление сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 5442 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама (5491 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 5717 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 5687 МПа.

На фиг. 5 представлен предел текучести сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов (2500 МПА); 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 2765 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 2824 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 2736 МПа.

На фиг. 6 представлено относительное удлинение сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 35%, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 39%, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 40%, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 38%.

На фиг. 7 представлено временное сопротивление сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 3579 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 3912 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 3952 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 3628 МПа.

На фиг. 8 представлен предел текучести сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 2108 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 2206 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 2392 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 2304 МПа.

На фиг. 9 представлено относительное удлинение сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов 31%, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 33%, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия 34%, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена 32%.

Использование предлагаемого способа обеспечивает по сравнению с известными способами следующие преимущества:

А) Происходит управление структурой наплавленного металла, получение мелкозернистой, однородной структуры.

На фиг. 2 видно, что средний размер дендрита по длине уменьшается: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама в 1,5 раза (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия в 1,7 раза (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена в 1,5 раза (4).

На фиг. 3 видно, что средний размер дендрита по ширине уменьшается: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама в 1,9 раза (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия в 3 раза (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена в 1,7 раза (4).

В) Происходит повышение механических свойств сварных соединений.

На фиг. 4 видно, что происходит повышение временного сопротивления при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 1% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 5% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 4% (4).

На фиг. 5 видно, что происходит повышение предела текучести при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 11% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 13% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 9% (4).

На фиг. 6 видно, что происходит повышение относительного удлинения при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 11% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 14% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 8% (4).

На фиг. 7 видно, что происходит повышение временного сопротивления при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 9% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 10% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 2% (4).

На фиг. 8 видно, что происходит повышение предела текучести при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 5% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 14% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 9% (4).

На фиг. 9 видно, что происходит повышение относительного удлинения при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 6% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 10% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 3% (4).

С) Происходит повышение коррозионной стойкости. В зависимости от ориентации зерен их поверхность стравливалась сильнее или слабее. Таким образом, между зернами образовывались ступеньки. Определили среднюю высоту этих ступенек на разных образцах: традиционный способ - 320 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 200 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 270 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена - 250 нм. Чем больше высота ступеньки, тем менее коррозионно-стойкий металл. Наименьшая высота ступеньки зафиксирована у образца с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама, он меньше всего подвергся растравливанию при коррозионных испытаниях. Наибольшее влияние коррозионная среда оказала на образец, полученный традиционным способом.

Исследования проводились на следующем сварочном оборудовании: источник питания (Lorch S8 SpeedPulse), установка для сварки (Mecome модификация WP 1500). Для проведения исследований произведена сварка образцов, изготовленных из стали 12Х18Н10Т толщиной 10 мм, в среде аргона сварочной проволокой 12Х18Н9Т диаметром 1,2 мм с введением в хвостовую часть сварочной ванны присадочной проволоки диаметром 2 мм, состоящей из стальной оболочки и сердечника (состав сердечника - наноструктурированные порошки). Режимы сварки - сила тока 240-260 А, напряжение - 28-30 В, скорость сварки - 24-25 мм/с.

Способ механизированной сварки плавящимся электродом в среде защитных газов, включающий введение в хвостовую часть сварочной ванны дополнительной присадочной проволоки, отличающийся тем, что в качестве дополнительной присадочной проволоки используют проволоку, состоящую из стальной оболочки, наполненной наноструктурированными порошками вольфрама, или молибдена, или оксида алюминия, при этом ее подачу осуществляют с возможностью расплавления проволоки в перегретом жидком металле сварочной ванны без расплавления упомянутых наноструктурированных порошков, образующих дополнительные центры кристаллизации металла шва.
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 79.
20.03.2014
№216.012.abe2

Способ механизированной сварки плавящимся электродом в среде защитных газов

Изобретение относится к механизированной дуговой сварке плавящимся электродом в среде защитных газов. Защитный газ вводят через ниппель и осевой канал инжектора в смесительную камеру. Создают разрежение в канале между смесительной камерой и накопителем для подсасывания наноструктурированных...
Тип: Изобретение
Номер охранного документа: 0002509717
Дата охранного документа: 20.03.2014
27.07.2014
№216.012.e57a

Способ дробления в валковой дробилке

Изобретение относится к способу дробления в валковой дробилке, заключающемуся в подаче дробимого материала в зазор между вращающимся валком и неподвижной щекой. Валковая дробилка содержит корпус, приводной вращающийся валок и неподвижную щеку. Поверхность вращающегося валка выполнена с...
Тип: Изобретение
Номер охранного документа: 0002524536
Дата охранного документа: 27.07.2014
20.09.2014
№216.012.f595

Способ дробления в валковой дробилке

Для измельчения кусковых материалов в валковой дробилке в зазор между вращающимся валком (1) и неподвижной щекой (2) подают дробимый материал. Дробилка содержит корпус, приводной вращающийся валок и неподвижную щеку. Поверхность валка выполнена с выступами в виде гребней, расположенных...
Тип: Изобретение
Номер охранного документа: 0002528702
Дата охранного документа: 20.09.2014
10.10.2015
№216.013.8147

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора...
Тип: Изобретение
Номер охранного документа: 0002564692
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.89bc

Устройство для сжигания жидкого и газообразного топлива

Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива. Устройство содержит корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу. В корпусе...
Тип: Изобретение
Номер охранного документа: 0002566863
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9196

Способ оценки эффективности защиты лимфоцитов от апоптоза

Изобретение касается способа оценки эффективности защиты лимфоцитов от апоптоза, относится к медицине и может быть использовано в биохимии, кардиологии и терапии. Способ включает выделение лимфоцитов, инкубацию клеток 48 часов при температуре 37°С и 5% содержанием СО, количественное определение...
Тип: Изобретение
Номер охранного документа: 0002568886
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.94b2

Способ получения влагостойкого композитного топлива из торфа

Изобретение относится к способу получения твердого композитного топлива из торфа, который включает термическую обработку торфа при температуре 200-500°C без доступа воздуха, смешивание связующего с измельченным углеродистым остатком, формирование из полученной смеси брикета и его сушку, при...
Тип: Изобретение
Номер охранного документа: 0002569685
Дата охранного документа: 27.11.2015
20.01.2016
№216.013.a233

Способ обработки полых цилиндров

Изобретение относится к обработке полых цилиндров. Выполняют бурты у торцев цилиндров. Осуществляют дорнование отверстия цилиндра с натягом, равным не менее 5% от его диаметра. Осуществляют осевое пластическое растяжение цилиндра с деформациями 1…2,5%. Осуществляют дорнование отверстия цилиндра...
Тип: Изобретение
Номер охранного документа: 0002573165
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.e822

Тепловизионная система для проведения наружной тепловизионной съемки

Изобретение относится к области неразрушающего контроля и может быть использовано при проведении наружной тепловизионной съемки для диагностики состояния строительных сооружений и энергетических объектов. Тепловизионная система для проведения наружной тепловизионной съемки содержит блок...
Тип: Изобретение
Номер охранного документа: 0002575798
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2f74

Тепловизионный дефектоскоп

Изобретение относится к области неразрушающего контроля и может быть использовано для активного одностороннего теплового контроля металлических, композиционных и др. материалов. Тепловизионный дефектоскоп содержит оптический нагреватель для тепловой стимуляции объекта контроля, тепловизор,...
Тип: Изобретение
Номер охранного документа: 0002580411
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 53.
27.07.2014
№216.012.e57a

Способ дробления в валковой дробилке

Изобретение относится к способу дробления в валковой дробилке, заключающемуся в подаче дробимого материала в зазор между вращающимся валком и неподвижной щекой. Валковая дробилка содержит корпус, приводной вращающийся валок и неподвижную щеку. Поверхность вращающегося валка выполнена с...
Тип: Изобретение
Номер охранного документа: 0002524536
Дата охранного документа: 27.07.2014
20.09.2014
№216.012.f595

Способ дробления в валковой дробилке

Для измельчения кусковых материалов в валковой дробилке в зазор между вращающимся валком (1) и неподвижной щекой (2) подают дробимый материал. Дробилка содержит корпус, приводной вращающийся валок и неподвижную щеку. Поверхность валка выполнена с выступами в виде гребней, расположенных...
Тип: Изобретение
Номер охранного документа: 0002528702
Дата охранного документа: 20.09.2014
10.10.2015
№216.013.8147

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора...
Тип: Изобретение
Номер охранного документа: 0002564692
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.89bc

Устройство для сжигания жидкого и газообразного топлива

Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива. Устройство содержит корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу. В корпусе...
Тип: Изобретение
Номер охранного документа: 0002566863
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9196

Способ оценки эффективности защиты лимфоцитов от апоптоза

Изобретение касается способа оценки эффективности защиты лимфоцитов от апоптоза, относится к медицине и может быть использовано в биохимии, кардиологии и терапии. Способ включает выделение лимфоцитов, инкубацию клеток 48 часов при температуре 37°С и 5% содержанием СО, количественное определение...
Тип: Изобретение
Номер охранного документа: 0002568886
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.94b2

Способ получения влагостойкого композитного топлива из торфа

Изобретение относится к способу получения твердого композитного топлива из торфа, который включает термическую обработку торфа при температуре 200-500°C без доступа воздуха, смешивание связующего с измельченным углеродистым остатком, формирование из полученной смеси брикета и его сушку, при...
Тип: Изобретение
Номер охранного документа: 0002569685
Дата охранного документа: 27.11.2015
20.01.2016
№216.013.a233

Способ обработки полых цилиндров

Изобретение относится к обработке полых цилиндров. Выполняют бурты у торцев цилиндров. Осуществляют дорнование отверстия цилиндра с натягом, равным не менее 5% от его диаметра. Осуществляют осевое пластическое растяжение цилиндра с деформациями 1…2,5%. Осуществляют дорнование отверстия цилиндра...
Тип: Изобретение
Номер охранного документа: 0002573165
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.e822

Тепловизионная система для проведения наружной тепловизионной съемки

Изобретение относится к области неразрушающего контроля и может быть использовано при проведении наружной тепловизионной съемки для диагностики состояния строительных сооружений и энергетических объектов. Тепловизионная система для проведения наружной тепловизионной съемки содержит блок...
Тип: Изобретение
Номер охранного документа: 0002575798
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2f74

Тепловизионный дефектоскоп

Изобретение относится к области неразрушающего контроля и может быть использовано для активного одностороннего теплового контроля металлических, композиционных и др. материалов. Тепловизионный дефектоскоп содержит оптический нагреватель для тепловой стимуляции объекта контроля, тепловизор,...
Тип: Изобретение
Номер охранного документа: 0002580411
Дата охранного документа: 10.04.2016
27.05.2016
№216.015.443f

Ретрансляционный модуль для телеметрической системы с электромагнитным каналом связи

Изобретение относится к геофизическим исследованиям скважин в процессе бурения с использованием телеметрических систем, основанных на электромагнитном канале передачи данных. Техническим результатом является увеличение достоверности и скорости передачи данных по электромагнитному каналу связи...
Тип: Изобретение
Номер охранного документа: 0002585617
Дата охранного документа: 27.05.2016
+ добавить свой РИД