×
25.08.2017
217.015.b128

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования теплофизических характеристик анизотропных материалов. Заявлен способ измерения теплофизических свойств анизотропных материалов методом линейного импульсного источника теплоты, заключающийся в том, что образец исследуемого материала изготавливают в виде двух массивных пластин, между которыми размещают линейный электронагреватель и измеритель температуры. На подготовительной стадии эксперимента полученную систему выдерживают при заданной начальной температуре T, с постоянным шагом во времени Δτ, измеряют разности температур и, начиная с n-го шага, контролируют величину показателя , n = const выбирают из диапазона 2≤n≤10. При выполнении критерия E≤0,01 на линейный электронагреватель подают тепловой импульс, длительность которого находится в диапазоне 18≤τ≤24 с. В течение активной стадии эксперимента с постоянным шагом во времени осуществляют измерение и регистрацию изменения во времени разности температур [T(r,τ)-T]. По полученным данным находят максимальное значение этой разности. Затем определяют ориентировочные значения коэффициента температуропроводности и объемной теплоемкости cρ исследуемого материала, находят величины и , расстояния между линейным электронагревателем и измерителем температуры и , а также оптимальную длительность теплового импульса . Расстояние между измерителем температуры и линейным нагревателем рассчитывают как среднее значение , а затем, путем проведения серии экспериментов при заданной ориентации линейного электронагревателя и измерителя температуры относительно главных осей симметрии образца, осуществляют измерения и последующую обработку полученных данных при найденных значениях , , , . В результате получают зависимости значений искомых коэффициента температуропроводности и объемной теплоемкости cρ исследуемого материала от ориентации линейного нагревателя и измерителя температуры относительно главных осей симметрии образца. Технический результат - повышение точности измерения теплофизических свойств анизотропных материалов. 3 ил.

Изобретение относится к области исследования теплофизических характеристик анизотропных материалов.

Известен способ определения комплекса теплофизических свойств твердых материалов [Патент РФ №2125258, кл. G01N 25/18, 1999], включающий воздействие тепловыми импульсами от линейного источника на плоскую поверхность исследуемого и эталонного образцов, измерение избыточных температур в моменты подачи тепловых импульсов в точках, расположенных на фиксированных расстояниях от линии нагрева на поверхности образцов. Измеренные температуры приближают с минимальной погрешностью к рассчитанным температурам, формируемых посредством программного управления параметрами теплофизических характеристик. По идентифицированным параметрам образцов и действительным значениям характеристик эталона определяют искомые характеристики.

Недостатками этого способа являются большая длительность и трудоемкость эксперимента, а также необходимость использования эталонного образца.

Известен способ измерения теплофизических свойств твердых материалов, методом линейного мгновенного источника тепла [Пономарев, С.В. Теоретические и практические основы теплофизических измерений: монография / под ред. С.В. Пономарева. - М.: ФИЗМАТЛИТ, 2008. - 408 с.], заключающийся в том, что из исследуемого материала изготавливают две массивные пластины (их толщина должна на менее чем в десять-двадцать раз превышать расстояние r между электронагревателем и измерителем температуры). Нагреватель и измеритель температуры размещают на расстоянии r друг от друга между этими двумя пластинами. Получившуюся систему в течение достаточно длинного промежутка времени выдерживают при необходимой постоянной температуре T0. Затем на линейный электронагреватель длиной L подают постоянную мощность P в течение заданного малого промежутка времени 0<τ≤τu и регистрируют изменение во времени разности температур [T(r,τ)-T0] по сигналу измерителя температуры. По полученным экспериментальным данным определяют максимальное значение разности температур [Tmax-T0]=[T(r,τmax]-T0] и значение момента времени τ=τmax, соответствующее этому максимальному значению [Tmax-T0], а также количество теплоты Qл=qл⋅τu, выделившейся в единице длины электронагревателя. По полученным значениям τmax, [Tmax-T0], с учетом известных r, Qл, вычисляют искомые значения коэффициентов температуропроводности a и теплопроводности λ исследуемого материала.

Недостатками данного способа является то, что значение момента времени τ=τmax по экспериментальным данным определяется с высокой относительной погрешностью, зачастую достигающей величины (15…20)%, а также то, что отсутствуют рекомендации по выбору рационального конструкционного размера r.

Наиболее близким техническим решением является способ измерения теплофизических свойств твердых материалов методом линейного мгновенного источника тепла [Пономарев С.В., Исаева И.Н., Мочалин С.Н. О выборе оптимальных условий измерения теплофизических свойств веществ методом линейного «мгновенного» источника тепла // Заводская лаборатория. Диагностика материалов.- 2010. - Т. 76, №5, С. 32-36], заключающийся в том, что из исследуемого материала изготавливают две массивные пластины, между которыми размещают линейный электронагреватель и измеритель температуры на расстоянии r друг от друга. Получившуюся систему на подготовительной стадии эксперимента в течение достаточно длинного промежутка времени выдерживают при необходимой постоянной температуре T0. Затем на линейный электронагреватель подают постоянную мощность в течение заданного малого промежутка времени 0<τ≤τu и регистрируют изменение во времени разности температур [T(r,τ)-Т0] по сигналу измерителя температуры. Так как определение значения τmax приводит к большим погрешностям, находят два момента времени τ' и τ'', для чего вводят параметр , где Tmax - максимальное значение температуры, достигаемое в ходе эксперимента в момент времени τmax. Были выведены математические модели, связывающие погрешности измерения температуропроводности и объемной теплоемкости с погрешностями измерения температуры, плотности источника тепла, геометрического размера r, а также сформулированы рекомендации по выбору оптимальных режимных и конструкционных параметров αопт и rопт.

Основным недостатком данного способа является то, что в математической модели температурного поля внутренний источник теплоты задается в виде линейного мгновенного импульса, хотя в действительности теплота подводится к нагревателю в течение промежутка времени 0<τ<τu, где τu - длительность реального (не мгновенного) теплового импульса, подводимого к нагревателю. До настоящего времени не рассматривались вопросы о выборе оптимального значения длительности τu теплового импульса.

Другим недостатком этого способа является то, что нет рекомендаций о том, как долго исследуемый образец на подготовительной стадии эксперимента надо выдерживать при постоянной температуре T0.

Техническая задача изобретения - повышение точности измерения теплофизических свойств анизотропных материалов за счет выбора оптимальных режимных параметров теплофизического эксперимента и рационального конструкционного размера, измерительного устройства, а также сокращение продолжительности подготовительной стадии эксперимента за счет использования критерия Ei.

Физическая модель измерительного устройства представляет собой ячейку, в которую помещают образец, состоящий из двух пластин: нижней и верхней. Между верхней гранью нижней пластины и нижней гранью верхней пластины помещают линейный электронагреватель (выполненный, например, в виде тонкой металлической проволоки из нихрома, манганина или константана), а на расстоянии r от нагревателя в этой же плоскости размещают измеритель температуры (в виде термометра сопротивления из медной проволоки).

Математическая модель температурного поля T(r,τ) в исследуемом материале (в случае использования импульсного линейного источника теплоты) может быть записана в виде:

где r, τ - пространственная координата образца и время; cρ, λ - объемная теплоемкость и теплопроводность исследуемого материала; T0 - первоначальная температура материала (в момент времени τ=0), принимаемая за начало температурной шкалы в каждом эксперименте, то есть T0=0; Qл - суммарное количество теплоты, выделившееся в единице длины линейного нагревателя при r=0 в момент времени τ=0; δ(r), δ(τ) - символические дельта-функции Дирака, τu - длительность реального (не мгновенного) теплового импульса, подводимого к нагревателю.

Решение краевой задачи (1)-(4) при непрерывно действующем постоянном источнике теплоты W(r,τ)=qлδ(r-0)⋅h(τ-0), имеет вид

где - количество теплоты, выделяемое единицей длины L линейного источника теплоты в единицу времени; - коэффициент температуропроводности; h(τ-0) - единичная ступенчатая функция, имеющая вид:

Если (в случае рассматриваемого в статье импульсного источника теплоты длительность 0<τ≤τu) задать W(r,τ)=qлδ(r-0)[h(t)-h(t-τu)], то на основании принципа суперпозиции и известного решения (5), получаем:

Таким образом, общее решение задачи (1)-(4) с учетом (5) и (6) принимает вид:

где - интегральная показательная функция, , - безразмерные функции, зависящие от r, τ, τu, a, причем, .

Разработанная методика обработки экспериментальных данных базируется на использовании безразмерного параметра

который представляет собой отношение разности температур [T(r,τ')-Т0] (в момент времени τ') к максимальному значению разности температур [Т(r,τmax)-Т0]=[Tmax-T0], имеющему место в момент времени τ=τmax.

Причем каждой величине разности температур γ⋅[Tmax-T0]=[T(r,τ')-T0], то есть каждому значению безразмерного параметра γ, соответствует конкретное значение момента времени τ'.

При математическом моделировании процесса измерения ТФС сначала с постоянным шагом Δτ во времени τ по формуле (7) вычисляли и регистрировали (в виде массивов) значения разностей температур [T(r,τi)-Т0] и моментов времени τi, i=1, 2, …, n, а затем, по массиву полученных данных [T(r,τi)-Т0], i=1, 2, …, n, находили максимальное значение [Tmax0] этой разности. После этого методом интерполяции находили значение момента временит τ', соответствующее величине разностей температур [T(r,τ')-Т0]=γ⋅[Tmax-T0], которое аналитически можно записать в виде

Поделив зависимость (7) при τ>τu на (9) получаем, что

Если известны из эксперимента длительность τu теплового импульса, значения разности температур T(r,τi)-T0], и соответствующие им значения моментов времени τi, i=1, 2, …, n, то путем решения уравнения (10) находим значение безразмерной величины

соответствующее заданной величине параметра γ, причем значение τ'=τ'(γ) является функцией величины параметра γ.

Из (11) следует расчетное соотношение для вычисления коэффициента температуропроводности

После преобразования соотношения (6), была получена формула для вычисления объемной теплоемкости

После получения формул (12) и (13) определим, при каком значении безразмерного параметра γ будут иметь место минимальные погрешности измерения искомых значений a и cρ коэффициента температуропроводности и объемной теплоемкости.

В соответствии с рекомендациями методик вывода формул для вычисления относительных погрешностей измерения ТФС были получены соотношения для вычисления среднеквадратичных оценок относительных погрешностей (δa)ск и (δcρ)ск измерения температуропроводности a и объемной теплоемкости cρ, имеющие вид:

В процессе работы стало очевидно, что относительные среднеквадратичные погрешности (δсρ)ск измерения объемной теплоемкости сρ существенно зависят от длительности τu теплового импульса.

При осуществлении измерений желательно обеспечить выполнение требования о подведении к линейному нагревателю такой величины мощности P, при которой достигаемая в момент времени τ=τmax в ходе каждого эксперимента максимальная разность температур [T(r,τmax)-T0]=[Tmax-T0] на расстоянии r от нагревателя остается примерно одинаковой и находится в определенных пределах, что необходимо по следующим причинам:

- если эта максимальная разность [Tmax-T0] мала, то относительные погрешности измерения значений разностей температур [T(r,τ)-T0] будут слишком большими, что может привести к росту относительных погрешностей (δa)ск, (δcρ)ск измерения искомых теплофизических свойств (ТФС);

- если же эта максимальная разность [Tmax-T0] окажется слишком большой, то не будет выполнено предположение о том, что процессы переноса теплоты в образце описываются линейной математической моделью (1)-(4), что опять же приведет к возрастанию результирующих погрешностей (δa)ск, (δcρ)ск измерения искомых ТФС из-за нелинейностей, не учитываемых линейной краевой задачей (1)-(4).

Для выполнения этого требования (что [Tmax-T0]≈const) при каждом значении длительности τu теплового импульса линейный нагреватель должен обеспечивать создание удельной мощности при которой внутри образца в единице длины нагревателя в каждом эксперименте выделяется постоянное суммарное количество теплоты

где qл - удельная мощность, подводимая нагревателем мощностью P и длиной L к образцу в течение промежутка времени 0≤τ≤τu.

Проведенные численные расчеты показали, что при исследовании образцов теплоизоляционных материалов с расстоянием от нагревателя до измерителя температуры 3≤r≤6 мм для получения разности температур [Tmax-T0]=3…7°C, суммарное количество теплоты Qл, выделяющееся в единице длины L электронагревателя, следует поддерживать в пределах . Поэтому приведенные на фиг. 1 и фиг. 2 данные и результаты определения оптимального значения , обеспечивающего получение минимальных погрешностей (δa)ск и (δcρ)ск измерения a и cρ, были получены при .

Рассмотрим подробнее вычисление составляющей погрешности δqл, входящей в формулу (15). Из изложенного выше следует

т.е. . При этом электрическую мощность P, подведенную к плоскому нагревателю, следует выбирать из соотношения , причем при , L=0.06 м получается, что

После логарифмирования (17), определения дифференциалов от левой и правой частей получившегося соотношения и выполнения других рекомендаций теории погрешностей получаем формулу

в которой величину P(τu) вычисляли по формуле (18). После подстановки (19) в (16), получаем

С использованием полученных формул (14) и (20) были рассчитаны зависимости от безразмерного параметра γ среднеквадратичных относительных погрешностей (δa)ск, (δcρ)ск, при длительности теплового импульса τu=21 c. Результаты расчетов представлены на фиг. 1. При этом в расчетах были использованы следующие исходные данные: , , ΔP=0,1 Вт; r=(2…8) мм, Δr=0,1 мм; ΔT=0,05 K, δL=0,5%.

Из фиг. 1 видно, что минимальные значения относительных погрешностей (δa)ск, (δcρ)ск зависят не только от параметра γ, но и от величины расстояния r между линейным импульсным нагревателем и измерителем температуры. В связи с этим было принято решение построить линии равных уровней погрешностей на плоскости с координатами (γ, r) для длительности теплового импульса τu=21 с. Результаты этой работы представлены на фиг. 2.

Представленные на фиг. 2 результаты вычислений показывают, что (при использованных в расчетах исходных данных) минимальные значения среднеквадратичных относительных погрешностей (δa)ск измерения коэффициента температуропроводности a достигаются при значениях безразмерного параметра γa в диапазоне 5.4 мм<r<6.0 мм, и при значениях основного конструкционного размера измерительного устройства в пределах 5.4 мм<r<6.0 мм, причем , .

В то же время минимальные значения среднеквадратичных относительных погрешностей (δcρ)ск измерения объемной теплоемкости cρ имеют место при 0,72<γ≤0,80 и 5,0≤r≤5,6, причем , .

Таким образом, для достижения минимальных значений погрешности (δa)ск и (δсρ)ск при измерении коэффициента температуропроводности a и объемной теплоемкости cρ исследуемого материала следует использовать измерительный преобразователь с расстоянием между измерителем температуры и нагревателем в диапазоне 5,4 мм≤r≤5,6 мм, причем можно принять .

Для определения оптимального значения длительности τu теплового импульса, обеспечивающего достижение минимальных значений относительных погрешностей (δa)ск, (δсρ)ск и среднеарифметических значений погрешностей измерения теплофизических свойств a и cρ, были выполнены расчеты по формулам (14) и (20), результаты которых представлены на фиг. 3.

Из фиг. 3 видно, что при изменении длительности τu теплового импульса среднеарифметическое значение погрешностей принимает минимальные значения при τuопт≈21 с, находящемся в диапазоне 18 с<τu<24 с.

Таким образом, при измерении теплофизических свойств исследуемого анизотропного материала следует поступать следующим образом:

- на подготовительной стадии эксперимента измеряют значения разностей температур с постоянным шагом во времени Δτ и, начиная с n-го шага, контролируют величину показателя , n = const выбирают из диапазона 2≤n≤10 и, при выполнении критерия Ei≤0,01, переходят к активной части эксперимента, для чего на линейный электронагреватель подают электрический импульс, длительность которого находится в диапазоне 18≤τu≤24 с;

- на протяжении активной стадии эксперимента измеряют и регистрируют с постоянным шагом во времени разность температур [T(r,τi)-T0] и по полученным данным находят максимальное значение этой разности [Tmax0]=[T(r,τmax)-Т0];

- путем проведения предварительных измерений определяют ориентировочные значения коэффициента температуропроводности aор и объемной теплоемкости cρор исследуемого материала по формулам:

,

,

где , , U(τ'), U(τ'') - безразмерные функции, определяемые при заданных ориентировочных значениях параметров и из (10);

- находят величину и расстояние между линейным электронагревателем и измерителем температуры из зависимости

- определяют величину и значение расстояния , а также оптимальную длительность теплового импульса из зависимости

;

- расстояние между измерителем температуры и линейным нагревателем рассчитывают как среднее значение ;

- изготавливают измерительный преобразователь с расстоянием между измерителем температуры и линейным нагревателем ;

- путем проведения серии экспериментов, при нескольких вариантах ориентации линейного электронагревателя и измерителя температуры относительно главных осей симметрии образца, осуществляют измерения и последующую обработку полученных данных при найденных значениях , , , и, в результате, получают таблицу значений искомых коэффициента температуропроводности a и объемной теплоемкости cρ исследуемого материала по формулам

,

,

характеризующую зависимость температуропроводности а анизотропного материала от ориентации линейного нагревателя и измерителя температуры относительно главных осей симметрии образца.

Отсутствие зависимости объемной теплоемкости ср исследуемого материала от ориентации линейного нагревателя и измерителя температуры относительно главных осей симметрии образца свидетельствует о том, что в процессе эксперимента были верно выдержаны условия его проведения.


СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ МАТЕРИАЛОВ МЕТОДОМ ЛИНЕЙНОГО ИМПУЛЬСНОГО ИСТОЧНИКА ТЕПЛОТЫ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 133.
19.06.2019
№219.017.83eb

Способ определения коэффициента пуассона для стенки кровеносного сосуда на основе эндоскопической оптической когерентной томографии

Изобретение относится к области измерений для диагностических целей, в частности к способам оценки состояния сердечно-сосудистой системы посредством анализа результатов эндоскопической ОКТ стенок кровеносных сосудов. Способ определения коэффициента Пуассона для стенки кровеносного сосуда на...
Тип: Изобретение
Номер охранного документа: 0002691619
Дата охранного документа: 14.06.2019
20.06.2019
№219.017.8d14

Способ непрерывного весового дозирования сыпучего материала и устройство для его осуществления

Изобретение предназначено для непрерывного весового дозирования сыпучих материалов. Сущность: устройство содержит основание (1), состоящее из неподвижной платформы, на которой шарнирно закреплена подвижная платформа (2). На подвижной платформе (2) установлены лоток (4) и вибратор (7),...
Тип: Изобретение
Номер охранного документа: 0002691786
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8ddc

Установка для сушки пастообразных материалов в закрученном взвешенном слое полидисперсных инертных тел

Изобретение относится к области химической промышленности и служит для сушки высоковлажных пастообразных материалов. Сушилка для пастообразных материалов на инертных телах содержит биконическую камеру, сопряженную с цилиндрической сепарационной камерой, слой инертных тел, барабан с...
Тип: Изобретение
Номер охранного документа: 0002691892
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8e11

Корнеклубнерезка

Изобретение относится к сельскому хозяйству, в частности к устройствам для резания корнеклубнеплодов на пластинки на животноводческих фермах и комплексах. Корнеклубнерезка содержит кожух с загрузочной и выгрузной горловинами, внутри которого неподвижно установлен вертикальный режущий барабан,...
Тип: Изобретение
Номер охранного документа: 0002692052
Дата охранного документа: 19.06.2019
22.06.2019
№219.017.8e94

Способ цветового доплеровского картирования в эндоскопической оптической когерентной томографии

Изобретение относится к области измерений для диагностических целей, в частности измерений характеристик тока крови в живом организме. Способ цветового доплеровского картирования в эндоскопической ОКТ содержит сканирование исследуемого объекта пучком излучения, получение первого набора...
Тип: Изобретение
Номер охранного документа: 0002692220
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.91f1

Способ ангиографии в эндоскопической оптической когерентной томографии

Изобретение относится к области измерений для диагностических целей, в частности измерений для оценок состояния сердечно-сосудистой системы. Способ ангиографии в эндоскопической оптической когерентной томографии содержит получение набора данных оптической когерентной томографии, содержащего...
Тип: Изобретение
Номер охранного документа: 0002692225
Дата охранного документа: 21.06.2019
23.07.2019
№219.017.b723

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к медицине и может быть использовано для определения динамики изменения скорости оседания эритроцитов (СОЭ). Для этого проводят смешивание исследуемой пробы крови с антикоагулянтом. Полученный раствор помещают в гематокритный капилляр и центрифугируют. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002695072
Дата охранного документа: 19.07.2019
15.08.2019
№219.017.bfed

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ. Определяют...
Тип: Изобретение
Номер охранного документа: 0002697227
Дата охранного документа: 13.08.2019
16.08.2019
№219.017.c0de

Конструкция реакционно-ректификационного аппарата периодического действия для осуществления термокаталитических процессов

Изобретение относится к конструкциям массообменных аппаратов периодического действия и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Реакционно-ректификационный аппарат включает реакционную кубовую часть и сочлененную с ней разъемным соединением...
Тип: Изобретение
Номер охранного документа: 0002697465
Дата охранного документа: 14.08.2019
03.09.2019
№219.017.c67d

Способ определения артериального давления

Изобретение относится к медицине, в частности к физиологии и кардиологии. Регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн объемной...
Тип: Изобретение
Номер охранного документа: 0002698986
Дата охранного документа: 02.09.2019
Показаны записи 41-48 из 48.
29.05.2018
№218.016.56d9

Устройство для определения натяжения шнура

Изобретение относится к измерительной технике и может быть использовано для измерения вантовых конструкций. Сущность изобретения сводится к тому, что предварительно натянутый шнур защемляют между двумя зажимами из материала с высоким коэффициентом трения, например резины. Используя систему...
Тип: Изобретение
Номер охранного документа: 0002655032
Дата охранного документа: 23.05.2018
11.04.2019
№219.017.0b63

Линейный реверсивный вибродвигатель

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и...
Тип: Изобретение
Номер охранного документа: 0002684395
Дата охранного документа: 09.04.2019
31.05.2019
№219.017.705b

Способ проверки при автоматической сортировке картофеля

Изобретение относится к способам проверки овощей и фруктов при их автоматической сортировке. Способ проверки при сортировке картофеля, транспортируемого по оси х на цепном конвейере, содержащем множество роликов, смонтированных с возможностью свободного вращения каждого вокруг поперечной оси...
Тип: Изобретение
Номер охранного документа: 0002689854
Дата охранного документа: 29.05.2019
05.02.2020
№220.017.fdf6

Способ ультразвукового контроля вязкости по муни полимеров

Использование: для определения вязкости по Муни полимера. Сущность изобретения заключается в том, что пропускают импульсы ультразвуковых колебаний через исследуемый образец, принимают ультразвуковые колебания, прошедшие через образец, измеряют скорость распространения и коэффициент затухания...
Тип: Изобретение
Номер охранного документа: 0002712956
Дата охранного документа: 03.02.2020
24.07.2020
№220.018.3641

Линейный шаговый пьезоэлектрический двигатель

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и...
Тип: Изобретение
Номер охранного документа: 0002727610
Дата охранного документа: 22.07.2020
12.04.2023
№223.018.4818

Способ контроля степени исчерпания защитных свойств сыпучего сорбента

Изобретение относится к области неразрушающих методов контроля качественного состояния фильтрующе-поглощающих изделий. Заявлен способ контроля степени исчерпания защитных свойств сыпучего сорбента, заключающийся в том, что формируют стандартный и контролируемый образцы сорбента в форме плоского...
Тип: Изобретение
Номер охранного документа: 0002746238
Дата охранного документа: 09.04.2021
23.05.2023
№223.018.6e11

Мотор-колесо

Изобретение относится к области машиностроения. Мотор-колесо содержит электродвигатель, планетарный редуктор, тормозной механизм и колесный диск. Электродвигатель имеет крепежные отверстия, через которые крепится солнечная шестерня с установленным внутри игольчатым подшипником, который с одной...
Тип: Изобретение
Номер охранного документа: 0002758228
Дата охранного документа: 26.10.2021
17.06.2023
№223.018.7ecc

Подвеска ведущих колес грузовой платформы с повышенными эксплуатационными свойствами

Изобретение относится к области машиностроения, в частности к подвескам транспортного средства. Подвеска состоит из двух поперечных рычагов, подрамника, поворотного кулака со ступичным подшипником, шаровых опор, упругого элемента. Тяги, которые шарнирно связаны с поворотным рычагом,...
Тип: Изобретение
Номер охранного документа: 0002774205
Дата охранного документа: 16.06.2022
+ добавить свой РИД