×
25.08.2017
217.015.b0de

Результат интеллектуальной деятельности: СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции. Сущность: осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения. Для этого из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода . Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования P, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины . Вычисляют параметр состояния предразрушения K.Затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода . Сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения K, устанавливая возможность дальнейшей эксплуатации конструкционного изделия. Технический результат: возможность установления состояния предразрушения конструкционного изделия, работающего как в установившихся, так и в нестационарных тепловых режимах. 2 табл., 2 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции.

Известно изобретение «Способ диагностики трещинообразования в металлоконструкциях» (RU 2356034 С2, МПК G01N 21/88, G01N 3/32, опубл. 20.05.2009), в котором определяют наиболее вероятные места разрушения металлоконструкции и подготавливают в этих местах контрольные площадки. Затем исследуют поверхности контрольных площадок и определяют степень поврежденности. Причем на поверхность этих площадок наносят две и более реперные линии вблизи концентратора напряжений параллельно предполагаемому развитию трещины на одинаковом расстоянии друг от друга. Последовательно через заданное число циклов проводят ряд проверок диагностируемой металлоконструкции: производят измерение расстояния между реперными линиями и определяют степень поврежденности узла исследуемой металлоконструкции по изменению расстояния между указанными линиями.

Недостаток изобретения - невыполнимость диагностирования труднодоступных участков, например внутренних поверхностей металлических труб.

Известно изобретение «Способ контроля целостности трубопроводов циркуляционного контура ядерного реактора» (RU 2208848 С1, МПК G21C 17/017, G01N 23/00, опубл. 20.07.2003), в котором измерение параметров и контроль за процессом образования трещин и определение их месторасположения осуществляют с помощью датчиков γ-излучения. Эти датчики располагают относительно друг друга на диаметрально противостоящих друг другу внешних поверхностях трубопроводов, а измерение параметров трещин и их координат ведут одновременно в процессе перемещения датчиков по наружной поверхности трубопровода. При этом наличие трещины на внутренней поверхности трубопровода определяют по совпадению знаков скоростей изменения активностей, измеренных на диаметрально расположенных внешних поверхностях трубопроводов. Глубину, ширину, протяженность и форму трещины находят по отношению скорости изменения уровня активности излучения, измеренной со стороны внутренней трещины, к скорости изменения уровня активности на диаметрально расположенной стороне трубопровода. Координаты трещин фиксируют по местоположению датчиков излучения на оси трубопровода и углу их поворота от начального положения.

Недостатком изобретения является невозможность прогнозирования дальнейшего роста трещины и установления состояния предразрушения конструкции.

Наиболее близким, принятым за прототип, является изобретение «Способ определения начала разрушения» (RU 2234073 С2, МПК G01N 3/00, опубл. 10.08.2004), в котором деформируют образец материала и регистрируют момент начала разрушения. При этом регистрируют максимальную температуру на рабочем участке образца материала, строят графическую зависимость изменения максимальной температуры от степени деформации, а момент начала разрушения устанавливают по понижению температуры образца материала на стадии предразрушения.

Недостаток изобретения - невозможность применения для материалов, работающих в нестационарных тепловых режимах.

Задача изобретения - установление состояния предразрушения конструкционного изделия, работающего как в установившихся, так и в нестационарных тепловых режимах.

Поставленная задача достигается тем, что в заявленном способе осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения. Для этого из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода . Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины . Вычисляют параметр состояния предразрушения Kс.п.. Затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода . Сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия.

Длительно действующие циклически изменяющиеся напряжения и деформации, возникающие при пусках, остановах, резких изменениях режимов приводят к изменению структуры материала конструкционного изделия, его состояния, механических свойств и сопровождаются образованием микротрещин. Эти микротрещины могут как останавливаться в своем развитии, так и увеличиваться, приводя к потере сплошности, разупрочнению и возникновению состояния предразрушения, которое может спровоцировать разрушение конструкции (отказ).

Причиной наступления состояния предразрушения является накопление внутренней энергии при деформации, которая в очередном цикле нагружения уменьшается из-за разрыва межатомных связей и расходуется на продвижение трещины. Таким образом, параметром наступления состояния предразрушения является релаксация (снижение до нуля) внутренних напряжений (Дарков А.В., Шпиро Г.С. Сопротивление материалов. - М.: Альянс, 2014. - 624 с., стр. 340).

Процесс циклического деформирования сопровождается знакопеременным изменением внутренних напряжений: от минимальных разупрочняющих значений до максимальных упрочняющих . Применение циклического деформирования с возрастающей нагрузкой в каждом цикле позволяет форсировать искусственное старение конструкционного изделия, а также установить поле безопасных напряжений, под которыми понимают напряжения, находящиеся между линиями упрочнения и разупрочнения (фиг. 1, фиг. 2). Поле безопасных напряжений характеризует допустимые состояния конструкционного изделия, в которых рост макротрещины отсутствует.

Циклическое деформирование с возрастающей нагрузкой в каждом цикле осуществляют следующим образом. Эталон нагружают внешним давлением, затем снимают приложенную нагрузку и определяют параметр элементарной кристаллической решетки в ненагруженном состоянии. Эту последовательность действий повторяют, увеличивая величину внешнего давления до момента роста и раскрытия трещины, признаком чего является релаксация внутренних напряжений I рода, свидетельствующая о наступлении состояния предразрушения конструкционного изделия. Шаг нагружения выбирают произвольно.

Внутренние напряжения I рода σI определяют по формуле:

,

где - параметр элементарной кристаллической решетки после нагружения давлением Pi, ;

- параметр элементарной кристаллической решетки после предыдущего нагружения давлением Pi-1, ;

Е - модуль упругости, МПа;

Pi - давление нагружения, МПа.

Момент прорастания трещины определяют из графической зависимости изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 1, фиг. 2) следующим образом: точка является моментом прорастания трещины , если после нагружения внешним давлением Pi+1 значение внутренних напряжений I рода меняется в сторону разупрочнения по отношению к предыдущему циклу и становится равным нулю ( при Pi+1).

Параметр состояния предразрушения Kс.п. вычисляют по формуле:

,

где - напряжение предразрушения, соответствующее моменту прорастания трещины, МПа;

- наибольшее из значений внутренних напряжений I рода при циклическом деформировании, МПа.

Значение внутренних напряжений I рода в образце конструкционного изделия определяют по формуле:

,

где - параметр элементарной кристаллической решетки образца конструкционного изделия, ;

- параметр элементарной кристаллической решетки эталона до нагружения, ;

Е - модуль упругости, МПа.

Установление возможности дальнейшей эксплуатации конструкционного изделия проводят путем сравнения (отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании ) с параметром состояния предразрушения Kс.п. следующим образом.

1) Если

В этом случае трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2) Если

В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср, равным значению среднего шага при циклическом деформировании эталона ΔР.

Если после нагружения величина внутреннего напряжения изменилась в сторону упрочнения:

,

то испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

Если после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

,

то испытание повторяют, снова нагружая образец увеличивающимся внешним давлением с шагом, равным значению среднего шага при циклическом деформировании эталона ΔP.

Испытания проводят до тех пор, пока не наступает упрочнение - или пока не происходит глубокая релаксация напряжений, сопровождающаяся прорастанием трещины - :

- Если , т.е. напряжения I рода изменились в сторону упрочнения, то испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

- Если , т.е. наблюдается глубокая релаксация напряжений, то испытания заканчивают - трещины активны.

Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируется на основании полного обследования изделия.

В таблице 1 приведены результаты определения внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (наружная сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

В таблице 2 приведены результаты определения внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (внутренняя сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

На фиг. 1 показана зависимость внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (наружная сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

На фиг. 2 показана зависимость внутренних напряжений I рода σI эталона, изготовленного из неэксплуатируемого ранее участка трубы пароперегревателя (внутренняя сторона), выполненного из стали ДИ-59, при различных значениях внешнего давления Pi.

Заявляемый способ поясняется следующими примерами.

Пример 1. Подготавливают эталон из неэксплуатируемого ранее участка трубы ширмового пароперегревателя (наружная сторона), изготовленного из стали ДИ-59, который подвергают циклическому деформированию (нагружают внешним давлением 18 МПа - снимают приложенную нагрузку - определяют параметр элементарной кристаллической решетки в ненагруженном состоянии, затем повторяют эту последовательность действий, увеличивая величину внешнего давления до Pi=36; 53; 71; 85; 101; 118; 128; 142; 157 МПа) и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют внутренние напряжения I рода (табл. 1). Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 1), по которой устанавливают поле безопасных напряжений, значение максимального напряжения (фиг. 1, точка 7) и момент прорастания трещины (фиг. 1, точка 8):

,

.

Вычисляют параметр состояния предразрушения Kс.п.:

.

Затем в ширмовом пароперегревателе, изготовленном из стали ДИ-59, выделяют наиболее вероятную по условию эксплуатации зону разрушения. Вырезают находящийся в этой зоне участок трубы, из которого изготавливают образец конструкционного изделия для испытаний. Определяют значение внутренних напряжений I рода в образце конструкционного изделия , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия следующим образом.

1.1. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае трещины неактивны, состояние предразрушения не наступило. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср=16 МПа, равным значению среднего шага при циклическом деформировании эталона ΔР=16 МПа (таблица 1).

Определяют значение внутренних напряжений I рода в образце конструкционного изделия после нагружения:

1.2.1. В образце конструкционного изделия значение внутренних напряжений I рода увеличивается и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону упрочнения:

.

Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2.2. В образце конструкционного изделия значение внутренних напряжений I рода уменьшилось и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

.

Испытание повторяют, снова нагружая образец увеличивающимся внешним давлением :

1.2.2.1. После трех испытаний (i=3) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

,

.

Последний цикл нагружения (i=3) сопровождался изменением внутренних напряжений I рода в сторону упрочнения. Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

1.2.2.2. После трех испытаний (i=3) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

,

.

Последний цикл нагружения (i=3) сопровождается глубокой релаксацией внутренних напряжений I рода. Испытания заканчивают - трещины активны. Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируют на основании полного обследования изделия.

Пример 2. Подготавливают эталон из неэксплуатируемого ранее участка трубы ширмового пароперегревателя (внутренняя сторона), изготовленного из стали ДИ-59, который подвергают циклическому деформированию (нагружают внешним давлением 26 МПа - снимают приложенную нагрузку - определяют параметр элементарной кристаллической решетки в ненагруженном состоянии, затем повторяют эту последовательность действий, увеличивая величину внешнего давления до Pi=51; 77; 103; 123; 144; 171; 185; 206; 226; 247; 267 МПа) и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют внутренние напряжения I рода (табл. 2). Строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования Pi (фиг. 2), по которой устанавливают поле безопасных напряжений, значения максимального напряжения (фиг. 2, точка 2) и момента прорастания трещины (фиг. 2, точка 11):

,

.

Вычисляют параметр состояния предразрушения Kс.п.:

.

Затем в ширмовом пароперегревателе, изготовленном из стали ДИ-59, выделяют наиболее вероятную по условию эксплуатации зону разрушения. Вырезают находящийся в этой зоне участок трубы, из которого изготавливают образец конструкционного изделия для испытаний. Определяют значение внутренних напряжений I рода в образце конструкционного изделия , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения Kс.п., устанавливая возможность дальнейшей эксплуатации конструкционного изделия следующим образом.

2.1. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае трещины неактивны, состояние предразрушения не наступило. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2. В образце конструкционного изделия значение внутренних напряжений I рода равно:

.

В этом случае отношение значения внутренних напряжений I рода в образце конструкционного изделия к величине наибольшего из значений внутренних напряжений I рода при циклическом деформировании составляет:

.

Выполняется условие . В этом случае образец конструкционного изделия подвергают нагружению внешним давлением Рср=22 МПа, равным значению среднего шага при циклическом деформировании эталона ΔР=22 МПа (таблица 2).

Определяют значение внутренних напряжений I рода в образце конструкционного изделия после нагружения:

2.2.1. В образце конструкционного изделия значение внутренних напряжений I рода увеличивается и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменяется в сторону упрочнения:

.

Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2.2. В образце конструкционного изделия значение внутренних напряжений I рода уменьшилось и становится равным:

.

Таким образом, после нагружения величина внутреннего напряжения изменилась в сторону разупрочнения:

.

Испытание повторяют, снова нагружая образец увеличивающимся внешним давлением :

2.2.2.1. После двух испытаний (i=2) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретает следующие значения в соответствии с циклами нагружения:

,

.

Последний цикл нагружения (i=3) сопровождается изменением внутренних напряжений I рода в сторону упрочнения. Испытания заканчивают. Трещины неактивны, состояние предразрушения не наступает. Конструкционное изделие можно эксплуатировать до момента следующей плановой проверки.

2.2.2.2. После двух испытаний (i=2) внутренние напряжения I рода в образце конструкционного изделия последовательно приобретают следующие значения в соответствии с циклами нагружения:

,

.

Последний цикл нагружения (i=2) сопровождается глубокой релаксацией внутренних напряжений I рода. Испытания заканчивают - трещины активны. Соответственно, участки труб конструкционного изделия, эксплуатирующиеся в идентичных условиях, подвержены трещинообразованию и последующему лавинному разрушению. Заключение о дальнейшей эксплуатации конструкционного изделия формируют на основании полного обследования изделия.

Способ установления состояния предразрушения конструкционного изделия, в котором осуществляют операции деформирования, построения графической зависимости и установления состояния предразрушения, отличающийся тем, что из конструкционного изделия подготавливают эталон, подвергают его циклическому деформированию и на основе возникающего при этом изменения параметра элементарной кристаллической решетки определяют значения внутренних напряжений I рода , строят графическую зависимость изменения внутренних напряжений I рода от давления циклического деформирования P, по которой определяют поле безопасных напряжений, значение максимального напряжения и момент прорастания трещины , вычисляют параметр состояния предразрушения K, затем из наиболее вероятной по условию эксплуатации зоны разрушения конструкционного изделия изготавливают образец, в котором определяют значение внутренних напряжений I рода , сравнивают отношение значения внутренних напряжений I рода к значению максимального напряжения с параметром состояния предразрушения K, устанавливая возможность дальнейшей эксплуатации конструкционного изделия.
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
СПОСОБ УСТАНОВЛЕНИЯ СОСТОЯНИЯ ПРЕДРАЗРУШЕНИЯ КОНСТРУКЦИОННОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 152.
10.02.2015
№216.013.23ea

Когенерационная энергоустановка с топливным элементом на основе внутрицикловой конверсии органического сырья

Изобретение относится к теплоэнергетике и может быть использовано для автономного энергообеспечения малых городов, поселков городского типа и сельских поселений. Энергоустановка содержит корпус (1), покрытый теплоизоляцией (2). Внутри корпуса (1) размещена газификационная печь (3) в виде сосуда...
Тип: Изобретение
Номер охранного документа: 0002540647
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.243f

Ячеистый теплозвукоизоляционный материал

Изобретение относится к области создания пористых теплозвукоизоляционных материалов и может быть использовано в строительстве, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения...
Тип: Изобретение
Номер охранного документа: 0002540732
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2617

Устройство для дорнования глубоких отверстий

Изобретение относится к металлообработке. Устройство состоит из корпуса с отверстием для размещения дорна и толкателя его привода. На корпусе закреплено направляющее устройство для толкателя, в корпусе которого выполнены центральное сквозное ромбическое отверстие для направления толкателя и...
Тип: Изобретение
Номер охранного документа: 0002541204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2675

Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы металлические шарики, диаметр которых равен толщине диска. Диск расположен на изолированном основании. Металлический...
Тип: Изобретение
Номер охранного документа: 0002541298
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c7

Сверхпроводящий выключатель

Сверхпроводящий выключатель может быть использован для коммутации электрических цепей постоянного тока, в системах вывода энергии из индуктивных сверхпроводящих накопителей, для защиты крупных магнитных сверхпроводящих систем, работающих в режиме «замороженного» магнитного поля, сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002541380
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26cf

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости К режущих инструментов по содержанию водорода в поверхностной и приповерхностной структуре. Отличительная особенность способа прогнозирования износостойкости...
Тип: Изобретение
Номер охранного документа: 0002541388
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.284a

Способ создания модели перекисного окисления лимфоцитов

Изобретение относится к медицине и может быть использовано для оценки эффективности модели перекисного окисления липидов мембран лимфоцитов. Для этого предварительно обрабатывают лимфоциты перекисью водорода в конечной концентрации 0,5 мМ и определяют белково-связанный глутатион. При увеличении...
Тип: Изобретение
Номер охранного документа: 0002541771
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b9c

Парогазовая установка

Изобретение относится к области теплоэнергетики. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой...
Тип: Изобретение
Номер охранного документа: 0002542621
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2dc5

Способ очистки сточных вод от фенолов и нефтепродуктов

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств. Основными операциями способа являются введение в исходную очищаемую воду коагулянта, флотация, создание...
Тип: Изобретение
Номер охранного документа: 0002543185
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e01

Секция механизированной крепи

Изобретение относится к горной промышленности, в частности к секции горной крепи, предназначенной для механизации очистных работ при разработке пластов угля, калийной соли и рудных залежей. Техническим результатом является трансформация энергии обрушающихся пород в электроэнергию, что позволяет...
Тип: Изобретение
Номер охранного документа: 0002543245
Дата охранного документа: 27.02.2015
Показаны записи 71-80 из 244.
10.12.2013
№216.012.8987

Способ электроразрядного разрушения твердых материалов

Изобретение относится к горнодобывающей и строительной отраслям промышленности. Способ электроразрядного разрушения твердых материалов включает формирование шпура в твердом материале, размещение в нем картриджа с веществом, предающим ударную волну, и взрываемым проводником, и инициирование...
Тип: Изобретение
Номер охранного документа: 0002500889
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89fc

Способ идентификации водородного охрупчивания легких сплавов на основе титана

Использование: для идентификации водородного охрупчивания легких сплавов на основе титана. Сущность заключается в том, что измеряют зависимость скорости распространения ультразвуковой волны в легких сплавах от содержания в них водорода. Способ отличается тем, что на поверхности металла...
Тип: Изобретение
Номер охранного документа: 0002501006
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a77

Резонансный свч-компрессор

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности. Технический результат - увеличение мощности выходных сигналов компрессора за счет увеличения объема накопительного резонатора и количества каналов вывода...
Тип: Изобретение
Номер охранного документа: 0002501129
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e2c

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике. В течение пуска и торможения выбегом электродвигателя одновременно проводят измерение мгновенных величин токов и напряжений на двух фазах статора и частоты вращения вала электродвигателя, определяют модуль вектора тока статора, преобразуют напряжения из...
Тип: Изобретение
Номер охранного документа: 0002502079
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fff

Способ приготовления модельного коллоидного раствора

Изобретение может быть использовано в установках водоподготовки при оценке эффективности их работы и выборе оптимальной последовательности технологического процесса водоочистки. Способ приготовления модельного коллоидного раствора включает внесение в дисперсионную среду при перемешивании...
Тип: Изобретение
Номер охранного документа: 0002502556
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9556

Интегральный микромеханический гироскоп

Изобретение относится к области измерительной техники и интегральной электроники, а именно к интегральным измерительным элементам величины угловой скорости. Гироскоп содержит две инерционные массы, выполненные в виде пластин с гребенчатыми структурами, на которых расположены пластины...
Тип: Изобретение
Номер охранного документа: 0002503924
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.97ed

Способ получения вольфрамата натрия

Изобретение относится к переработке вольфрамсодержащего сырья. В автоклав загружают вольфрамсодержащее сырье и раствор карбоната натрия концентрацией 220 г/л. Процесс выщелачивания ведут не менее 6 часов при температуре 200-225°С с постоянным перемешиванием. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002504592
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9896

Способ количественного определения никеля методом инверсионной вольтамперометрии на органо-модифицированном электроде

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках. Сущность: заключается в сочетании кислотной минерализации образца на этапе подготовки проб с последующим...
Тип: Изобретение
Номер охранного документа: 0002504761
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98b5

Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи. Сущность: измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов...
Тип: Изобретение
Номер охранного документа: 0002504792
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9beb

Способ нанесения медного покрытия

Изобретение относится к получению медных покрытий и может быть использовано для коррозионной защиты, декоративной обработки различных материалов, а также в электронной технике. Способ включает очистку и обезжиривание поверхности изделия, нанесение на нее механическим способом медьсодержащей...
Тип: Изобретение
Номер охранного документа: 0002505621
Дата охранного документа: 27.01.2014
+ добавить свой РИД