×
25.08.2017
217.015.ae28

Результат интеллектуальной деятельности: СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ НЕМЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях. Заявленный способ включает зонный нагрев с помощью радиационных нагревателей наружной поверхности испытуемой конструкции, измерение температуры наружной поверхности контактными датчиками и управление нагревом по заданному температурному режиму по показаниям контактных датчиков. В процессе испытания измеряют электрическую мощность радиационных нагревателей и сравнивают ее с заранее определенной на предварительных испытаниях калориметрического макета испытуемой конструкции электрической мощностью. На участках заданного температурного режима с быстрым темпом нагрева, когда показания датчиков температуры отстают от реальных значений температуры поверхности, измеряемая электрическая мощность начинает превышать предварительно определенную на величину, определяемую опытным путем, управление процессом нагрева переключается с управления по заданной температуре на управление по предварительно определенной электрической мощности радиационных нагревателей. Это продолжается до того момента времени, пока разность показаний контактных датчиков и заданного температурного режима не станет меньше величины, определяемой опытным путем для каждого датчика температуры. После этого управление нагревом осуществляется по заданному температурному режиму. Технический результат изобретения - увеличение точности воспроизведения температурного режима неметаллической конструкции, имеющего место в полете в результате интенсивного аэродинамического нагрева, в процессе наземных тепловых и теплопрочностных испытаний. 3 ил.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях.

Наибольшее распространение в практике тепловых испытаний получил радиационный нагрев наружной поверхности испытуемой конструкции с помощью внешних нагревателей.

Известен способ теплового нагружения с помощью радиационного нагрева конструкции, в процессе которого воспроизводится тепловой поток, подводимый к поверхности летательного аппарата в процессе аэродинамического нагрева (см. с. 77÷84. Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с). Использование этого способа в значительной степени ограничено трудностями измерения тепловых потоков. Особенно при теплопрочностных испытаниях конструкций, когда внедрить датчики теплового потока в поверхность конструкции сложно, а порой невозможно.

Также метод требует, чтобы степень черноты поверхности стендовой конструкции была равна степени черноты летного изделия.

Известен способ теплового нагружения с помощью радиационного нагрева конструкции, в процессе которого воспроизводится заданная температура поверхности испытуемой конструкции, соответствующая режиму нагрева в полете (см. с. 77÷84. Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с). Температура поверхности измеряется контактными датчиками, по показаниям которых ведется управление процессом нагрева. При радиационном нагреве неметаллических конструкций с большими темпами нагрева погрешность измерения температуры контактными датчиками становится неприемлемо большой и может составлять десятки и сотни градусов (см. с. 58. Т.В. Боровкова, В.Н. Елисеев, И.И. Лопухов. Повышение точности измерения температуры при испытаниях на стенде радиационного нагрева элементов конструкций из низкотеплопроводных материалов. Вестник МГТУ им. Н.Э. Баумана. Сер. «Машиностроение». 2006. №3). Это ограничивает применение указанного способа относительно небольшими скоростями нагрева.

Технической задачей данного способа является увеличение точности воспроизведения температурного режима испытуемой конструкции при скоростном высокотемпературном нагреве.

Заявленный способ включает зонный нагрев с помощью радиационных нагревателей наружной поверхности испытуемой конструкции, измерение температуры наружной поверхности контактными датчиками и управление нагревом по заданному температурному режиму по показаниям контактных датчиков. В процессе испытания измеряют электрическую мощность радиационных нагревателей и сравнивают ее с заранее определенной на предварительных испытаниях калориметрического макета испытуемой конструкции электрической мощностью. На участках заданного температурного режима с быстрым темпом нагрева, когда показания датчиков температуры отстают от реальных значений температуры поверхности, измеряемая электрическая мощность начинает превышать предварительно определенную на величину, определяемую опытным путем, управление процессом нагрева переключается с управления по заданной температуре на управление по предварительно определенной электрической мощности радиационных нагревателей. Это продолжается до того момента времени, пока разность показаний контактных датчиков и заданного температурного режима не станет меньше величины, определяемой опытным путем для каждого датчика температуры. После этого управление нагревом осуществляется по заданному температурному режиму. Электрическую мощность для каждой зоны нагрева определяют заранее нагревом калориметрического макета с воспроизведением аккумулируемого конструкцией в полете теплового потока.

Предложенный способ поясняется графическими материалами.

На фиг. 1 изображены варианты установки контактных датчиков температуры (термопар) на поверхность неметаллической конструкции, где 1 - термопара, установленная в паз; 2 - поверхность неметаллической конструкции; 3 - радиационный тепловой поток; 4 - паз под термопару; 5 - цемент; 6 - термопара, установленная «под накладку»; 7 - слой лакокрасочного покрытия. Термопара 1 (показано сечение спая термопары) установлена «в паз» 4, который заполняется клеем или цементом 5. Термопара 6 установлена непосредственно на поверхность «под накладку». Сверху нанесено лакокрасочное покрытие 7, выравнивающее оптические характеристики. Как видно спай термопары находится на некотором расстоянии от поверхности. Теплофизические характеристики термопар отличаются от характеристик неметаллических материалов нагреваемой конструкции. В результате при быстром темпе нагрева показания термопары отстают от истинной температуры поверхности и погрешность измерения может достигать десятков и сотен градусов. При уменьшении темпа нагрева, например, на участке вблизи экстремума заданного температурного режима погрешность минимальна. Это поясняется графиками на фиг. 2, на которой приведен пример управления нагревом по заданному температурному режиму 1 по показаниям термопары, установленной на поверхность (см. фиг. 1). Температурная кривая 2 показаний термопары (Ттерм) совпадает (с точностью регулирования) с заданным температурным режимом 1 (Тзадан). Но истинная температура 3 поверхности (Тповерх) неметаллической конструкции на участке большого темпа нагрева превышает заданную температуру на величину ΔT (поз. 4). Это приводит к перегреву испытуемой конструкции и даже к забросу температуры на максимуме. Последнее недопустимо, так как неметаллические материалы в конструкциях летательных аппаратов работают, как правило, на пределе своей стойкости и прочности при высоких температурах. На фиг. 3 показан пример управления в соответствии с предлагаемым способом, где 1 - кривая заданного температурного режима (Тзадан), 2 - кривая показаний термопары (Ттерм), 3 - кривая истинной температуры поверхности (Тповерх), 4 - кривая предварительно определенного на калориметрическом макете режима электрической мощности нагревателей (Nкалор), 5 - кривая замеренной электрической мощности нагревателей (Nизм). На начальном участке управление осуществляется по заданному температурному режиму. С момента времени τ1, когда на участке быстрого подъема температуры замеренная электрическая мощность превысила заданную предварительно определенную на величину ΔNэ (Nизм-Nзадан>ΔNэ), управление осуществляется по мощности до момента времени τ2. Величина ΔNэ зависит от теплофизических характеристик материала, оптических характеристик его поверхности и определяется опытным путем в результате предварительного калориметрического испытания. С момента τ2, когда величина разности между заданной температурой поверхности и показаниями термопары стала меньше величины ΔТэзадантерм<ΔТэ), управление осуществляется по заданной температуре. Величина разности ΔТэ зависит от погрешности измерения температуры термопарой, в том числе неопределенностью ее установки (расстояния от поверхности, степени заполнения паза цементом и др.), допустимой величиной перегрева неметаллического материала и определяется опытным путем.

Таким образом достигается увеличение точности воспроизведения температурного режима неметаллической конструкции, имеющего место в полете в результате интенсивного аэродинамического нагрева, в процессе наземных тепловых и теплопрочностных испытаний.

Способ теплового нагружения неметаллических конструкции, включающий зонный радиационный нагрев, измерение температуры поверхности неметаллической конструкции контактными датчиками и управление процессом нагрева по заданному температурному режиму по показаниям контактных датчиков температуры, отличающийся тем, что в процессе нагрева измеряют электрическую мощность радиационных нагревателей, сравнивают ее с мощностью, предварительно определенной опытным путем при нагреве калориметрического макета с воспроизведением аккумулируемого конструкцией в полете теплового потока, при этом, если измеряемая мощность нагревателей больше предварительно определенной на величину, определяемую опытным путем, то управление процессом нагрева ведется по предварительно определенной электрической мощности радиационных нагревателей до того момента времени, пока разность заданной температуры и показаний контактных датчиков температуры не станет меньше величины, определяемой опытным путем.
СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ НЕМЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ
СПОСОБ ТЕПЛОВОГО НАГРУЖЕНИЯ НЕМЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 169.
29.04.2019
№219.017.3e3d

Способ навигации летательного аппарата

Изобретение относится к управляемым летательным аппаратам (ЛА) различных типов базирования. Технической задачей предлагаемого изобретения является создание способа навигации ЛА с радиолокационными и/или оптическими корреляционно-экстремальными системами конечного наведения (КЭСКН), позволяющего...
Тип: Изобретение
Номер охранного документа: 0002686453
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.4793

Способ ультразвукового контроля изделий из композиционных материалов

Использование: для ультразвукового контроля изделий из композиционных материалов. Сущность изобретения заключается в том, что осуществляют подачу ультразвуковых волн при помощи преобразователя перпендикулярно контактной поверхности объекта контроля с направлением волны через одну фокальную ось...
Тип: Изобретение
Номер охранного документа: 0002686488
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.4819

Сверхзвуковая ракета

Изобретение относится к крылатым и аэробаллистическим ракетам с прямоточными воздушно-реактивными двигателями (ПВРД). Сверхзвуковая ракета (СР) включает фюзеляж в составе головного, центральных и хвостового отсеков, ПВРД и нерегулируемый воздухозаборник, бортовую аппаратуру системы управления в...
Тип: Изобретение
Номер охранного документа: 0002686567
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.4822

Космический аппарат-эвакуатор

Изобретение относится к космической технике. Космический аппарат-эвакуатор содержит корпус, устройства системы управления и электропитания, двигательную установку, электромеханическую систему захвата космического аппарата на орбите. На корпусе расположены не менее двух оптических камер,...
Тип: Изобретение
Номер охранного документа: 0002686563
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.48c8

Способ радиолокационного обзора морской поверхности и устройство для его осуществления

Изобретение относится к радиолокационным способам обнаружения и определения подвижных и неподвижных надводных объектов, их координат и параметров движения на дальностях прямой видимости до 800 км с использованием радиолокаторов на летательных аппаратах. Достигаемый технический результат –...
Тип: Изобретение
Номер охранного документа: 0002686678
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.49ea

Способ обеспечения герметичности турбонасосного агрегата

Изобретение относится к уплотнительной технике. Способ обеспечения герметичности турбонасосного агрегата заключается в определении оптимального диапазона контактного давления уплотняющей кромки армированной манжеты, равного 1,1÷1,4 кгс/см. При этом соответствующий ему внутренний диаметр...
Тип: Изобретение
Номер охранного документа: 0002687197
Дата охранного документа: 07.05.2019
14.05.2019
№219.017.5198

Многоконтактный герметичный переход

Изобретение относится к электротехнике и предназначено для соединения электрических проводников кабельной сети, в том числе ленточных проводов, разделенных герметичной стенкой, через герметичный переход при ограничении по объему места установки, массе и при высокой степени герметичности....
Тип: Изобретение
Номер охранного документа: 0002687287
Дата охранного документа: 13.05.2019
04.06.2019
№219.017.72c2

Устройство для зарядки баллона газом и герметизации сваркой

Изобретение относится к испытательной технике в машиностроении и может быть использовано в авиации и ракетостроении при производстве блоков высокого давления негорючего газа в устройствах длительного хранения. Устройство для зарядки баллона газом и герметизации сваркой, включающее корпус,...
Тип: Изобретение
Номер охранного документа: 0002690394
Дата охранного документа: 03.06.2019
04.06.2019
№219.017.72e8

Устройство фиксации

Изобретение относится к области машиностроения и касается высоконагруженных устройств стыковки и фиксации, полностью располагающихся во внутреннем объеме фиксируемых частей. Предлагаемое устройство фиксации содержит две фиксируемые между собой части, поворотное кольцо, установленное в одной из...
Тип: Изобретение
Номер охранного документа: 0002690267
Дата охранного документа: 31.05.2019
09.06.2019
№219.017.7655

Способ изготовления защитной панели летательного аппарата

Изобретение относится к области машиностроения, а именно к способу изготовления защитной панели летательного аппарата. Способ изготовления защитной панели летательного аппарата заключается в жестком закреплении плиток на внешней поверхности летательного аппарата. Плитки выполняются разрезкой...
Тип: Изобретение
Номер охранного документа: 0002690963
Дата охранного документа: 07.06.2019
Показаны записи 71-76 из 76.
03.07.2018
№218.016.69eb

Ракета в транспортно-пусковом контейнере

Изобретение относится к ракетной технике, а именно к устройствам, обеспечивающим сохранность ракеты при ее размещении в транспортно-пусковом контейнере (ТПК) на носителях, транспортно-заряжающих машинах, базах долговременного хранения. Ракета в транспортно-пусковом контейнере содержит...
Тип: Изобретение
Номер охранного документа: 0002659450
Дата охранного документа: 02.07.2018
18.05.2019
№219.017.5663

Модульная многоместная корабельная пусковая установка вертикального пуска

Изобретение относится к области ракетной техники, в частности к пусковым установкам (ПУ) надводных кораблей (НК), предназначенным для хранения, транспортировки и запуска ракет из транспортно-пусковых контейнеров (ТПК). На верхнем горизонтальном поясе ферменного каркаса ПУ смонтированы плиты,...
Тип: Изобретение
Номер охранного документа: 0002393409
Дата охранного документа: 27.06.2010
25.07.2019
№219.017.b85d

Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата

Изобретение относится к испытательной технике, определяющей тепловую стойкость конструкций изделия, в частности для имитации нагрева внешней поверхности отсека летательного аппарата (ЛА). Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата (ЛА) содержит каркас,...
Тип: Изобретение
Номер охранного документа: 0002695516
Дата охранного документа: 23.07.2019
25.07.2019
№219.017.b8ac

Стенд для испытаний на нагрузки отсека летательного аппарата

Изобретение относится к испытательной технике элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового и силового воздействия на внутреннюю поверхность отсека летательного аппарата в наземных условиях. Устройство включает размещенный на основании...
Тип: Изобретение
Номер охранного документа: 0002695514
Дата охранного документа: 23.07.2019
07.06.2020
№220.018.24de

Ракетный двигатель на твёрдом топливе

Изобретение относится к области машиностроения и может быть использовано в ракетно-космической технике при разработке ракетных двигателей твердого топлива (РДТТ). В ракетном двигателе на твердом топливе, содержащем корпус из композиционного материала, включающий днище с металлическим фланцем и...
Тип: Изобретение
Номер охранного документа: 0002722994
Дата охранного документа: 05.06.2020
21.05.2023
№223.018.68c5

Биоферментёр для обеззараживания побочных продуктов птицеводства и животноводства

Изобретение относится к области сельского хозяйства, в частности к технологическому оборудованию для обеззараживания побочных продуктов птицеводства и животноводства по технологии биоферментации. Биоферментер наряду с конструктивными узлами (признаками), имеющимися в прототипе, дополнительно...
Тип: Изобретение
Номер охранного документа: 0002794801
Дата охранного документа: 25.04.2023
+ добавить свой РИД