×
25.08.2017
217.015.ab0b

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ МЕДЬСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ ЦИКЛОГЕКСАНОЛА В ЦИКЛОГЕКСАНОН

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности в производстве капролактама. Изобретение относится к способу приготовления медьсодержащего катализатора для дегидрирования циклогексанола в циклогексанон, включающему нанесение предшественника активного компонента из суспензии, состоящей из водного раствора аммиачно-карбонатного комплекса меди с распределенным в нем порошком твердого оксидного носителя - смеси белой сажи и бемита, термическую обработку и гранулирование катализаторной шихты. Нанесение предшественника активного компонента осуществляют в переходном гидродинамическом режиме, соответствующем значениям центробежного критерия Рейнольдса 2500-10000. Массовое отношение оксида меди к основному гидрооксиду меди в составе предшественника активного компонента составляет 0,37-2,70, при этом преобладающий диаметр пор составляет 16-24 нм. Технический результат - усовершенствование способа приготовления медьсодержащего катализатора для дегидрирования циклогексанола в циклогексанон, приводящего к получению катализатора с повышенной устойчивостью к коксоотложению при сохранении высоких показателей селективности, активности и термостабильности. 2 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к способам приготовления катализатора для дегидрирования циклогексанола в циклогексанон, например, в производстве капролактама.

Известен способ приготовления катализатора для дегидрирования циклогексанола в циклогексанон путем обработки твердого оксидного носителя водным раствором соли меди в присутствии специального комплексообразователя в виде водорастворимых органических полимеров. Порошок катализатора после добавления специальных присадок таблетируют в изделия, которые затем подвергают термообработке [Патент РФ №2218987, 7 МКИ B01J 23/72, 37/03, 31/06, 1998 г.]. Недостатками способа являются невысокая активность и термостабильность получаемого катализатора.

Известен также способ приготовления катализатора для дегидрирования циклогексанола в циклогексанон, включающий нанесение предшественника активного медного компонента в виде оксида меди из суспензии, состоящей из водного раствора аммиачно-карбонатного комплекса меди с распределенным в нем порошком оксидного твердого носителя, термическую обработку и гранулирование шихты [Патент РФ №2353425, B01J 23/72 (2006.1), 2008 г.]. Нанесение предшественника активного компонента осуществляют из суспензии при температуре 55°C-350°C при перемешивании, соответствующей критическим значениям центробежного критерия Рейнольдса (≈50), при которых наблюдается ламинарный режим течения. В условиях недостаточной интенсивности перемешивания разложение аммиачно-карбонатного комплекса меди протекает уже в растворе с образованием темного осадка оксида меди, который затем адсорбируется на носителе в форме крупных кристаллитов размером 15-18 нм. Известный способ имеет недостатки. Во-первых, он не обеспечивает прочного сцепления частиц оксида меди с носителем - кристаллиты слабо связаны с поверхностью носителя, подвержены миграции и агломерации при температурном воздействии. Во-вторых, образование и осаждение на носителе крупных кристаллитов обусловливает недостаточно высокую удельную поверхность катализатора, которая не превышает 90 м2/г. Формирование медного покрытия с низкой адгезионной прочностью с носителем и отсутствие «резерва» по внутренней поверхности являются причиной низкой термостабильности катализатора при возможных перегревах в промышленном реакторе. Под действием повышенных температур внутренняя поверхность катализатора сокращается до значений ниже критических, что приводит к значительному снижению его активности.

Из известных технических решений наиболее близким по технической сущности (прототипом) к предлагаемому изобретению является способ приготовления катализатора для дегидрирования циклогексанола в циклогексанон, включающий нанесение предшественника активного медного компонента из суспензии, состоящей из водного раствора аммиачно-карбонатного комплекса меди с распределенным в нем порошком твердого оксидного носителя - смеси белой сажи и бемита, при постоянном перемешивании, соответствующем развитому турбулентному гидродинамическому режиму при значениях центробежного критерия Рейнольдса больше 10000, термическую обработку и гранулирование шихты [Патент РФ №2574730, МКИ B01J 37/08, 21/08, 21/02, С07В 41/06, 49/303 (2006.1) 10.02.2016 г.). Известный способ обеспечивает осаждение на носителе предшественника активного компонента в форме прочно связанного с ним основного гидрооксида меди (малахитовых структур), обладающего высокой удельной поверхностью. В итоге получают катализатор с повышенной термостабильностью при сохранении высоких показателей селективности и активности. Недостатком известного способа, как показывает практика промышленной эксплуатации, является низкая устойчивость катализатора к коксооотложению в условиях переработки сырья, состав которого отличается от нормативных показателей. Так, при переработке анольного сырья, содержащего значительные количества фракции циклогексанона (больше 12-13 мас.% вместо 2-10 мас.%, установленных производственным регламентом), продолжительность нормальной эксплуатации катализатора ограничена 50-60 сутками. Наблюдаемое снижение активности может достигать 15% и изменяется от 60% до 45%. Дезактивация катализатора при закоксовывании связана с экранированием и блокировкой коксом активной поверхности и пор. Для восстановления активности необходимо проводить операцию регенерации катализатора, т.е. обработки его кислородсодержащим газом для удаления коксовых отложений. Значительному снижению активности катализатора, полученного по известному способу, способствует его пористая структура, изобилующая узкими порами размером 5-8 нм, в устье которых и происходит отложение кокса.

Техническим результатом, на который направлено предлагаемое изобретение, является усовершенствование способа приготовления катализатора дегидрирования циклогексанола в циклогексанон, приводящего к получению катализатора с повышенной устойчивостью к коксоотложению при сохранении высоких показателей селективности, активности и термостабильности.

Для достижения технического результата в способе приготовления катализатора для дегидрирования циклогексанола в циклогексанон путем нанесения предшественника активного компонента из суспензии, состоящей из водного раствора аммиачно-карбонатного комплекса меди с распределенным в нем порошком твердого оксидного носителя - смеси белой сажи и бемита, при постоянном перемешивании, термической обработке и гранулировании шихты согласно изобретению нанесение предшественника активного компонента осуществляют в переходном гидродинамическом режиме, соответствующем значениям центробежного критерия Рейнольдса 2500-10000.

Проведение стадии нанесения в переходном гидродинамическом режиме обеспечивает осаждение на носителе предшественника активного компонента как в форме оксида меди, так и в форме основного гидрооксида меди (малахитовых структур), причем массовое отношение оксида меди к основному гидрооксиду меди в составе предшественника активного компонента составляет 0,37-2,70, при этом преобладающий диаметр пор составляет 16-24 нм.

Настоящее изобретение соответствует условию патентоспособности «новизна», поскольку из уровня техники не удалось найти технического решения, существенные признаки которого полностью совпадали бы со всеми признаками, имеющимися в независимом пункте формулы.

Также настоящее изобретение соответствует критерию изобретения «изобретательский уровень», поскольку из уровня техники не удалось найти технического решения, существенные признаки которого обеспечивали выполнение такой же технической задачи, на выполнение которой направлено данное изобретение.

Изобретение иллюстрируется следующими примерами:

Пример 1

В обогреваемый реактор с мешалкой заливают 443 см3 раствора аммиачно-карбонатного комплекса меди с концентрацией меди 100 г/л (в пересчете на CuO), добавляют 13,7 г сухого карбоната натрия, перемешивают и постепенно при работающей мешалке засыпают носитель: 102,4 г белой сажи с удельной поверхностью 100 м2/г и 40,9 г бемита с удельной поверхностью 220 м2/г в массовом отношение белая сажа:бемит - 2,5. Осаждение меди на носитель ведут при постоянном перемешивании и при температуре 90°С в переходном гидродинамическом режиме, соответствующем значению центробежного критерия Рейнольдса 8000, до остаточного содержания меди в растворе не более 3-4 г/дм3. Полученную катализаторную массу отфильтровывают и высушивают при температуре 110-120°С. Просушенную массу размалывают в порошок, увлажняют до влажности 40% и экструдируют в гранулы диаметром 4 и высотой 6 мм. Гранулы сушат 2 ч при температуре 110-120°С и затем термообрабатывают при 260°С в течение 2 ч.

Приготовленный катализатор имеет состав, мас.%: медь (в пересчете на CuO) - 21,5; натрий (в пересчете на Na2O) - 4; остальное носитель: белая сажа и бемит в соотношении 2,5:1. Массовое отношение оксида меди к основному гидрооксиду меди в составе предшественника активного компонента составляет 0,37:1. Преобладающий диаметр пор в катализаторе 8 нм, удельная поверхность 350 м2/г.

Пример 2

Катализатор готовят аналогично примеру 1, но осаждение меди на носитель ведут в переходном гидродинамическом режиме, соответствующем значению центробежного критерия Рейнольдса 10000. Берут 454 см3 раствора аммиачно-карбонатного комплекса меди, 10,2 г сухого карбоната натрия, 108,4 г белой сажи и 37,4 г бемита так, что в массовом отношение белая сажа:бемит составляет 2,9:1.

Катализатор имеет состав, мас.%: медь (в пересчете на CuO) - 22; натрий (в пересчете на Na2O) - 3,0, остальное носитель - белая сажа и бемит в отношении 2,9:1.

Массовое отношение оксида меди к основному гидрооксиду меди в составе предшественника активного компонента составляет 0,43:1. Преобладающий диаметр пор в катализаторе 18 нм, удельная поверхность 180 м2/г.

Пример 3

Катализатор готовят аналогично примеру 1, но осаждение меди на носитель ведут в переходном гидродинамическом режиме, соответствующемм значению центробежного критерия Рейнольдса 5000. Берут 474 см3 раствора аммиачно-карбонатного комплекса меди, 6,8 г сухого карбоната натрия, 112 г белой сажи и 35 г бемита так, что в массовом отношение белая сажа:бемит составляет 3,2:1.

Катализатор имеет состав, мас.%: медь (в пересчете на CuO) - 23,0; натрий (в пересчете на Na2O) - 2,0; остальное носитель - белая сажа и бемит в отношении 3,2:1. Массовое отношение оксида меди к основному гидрооксиду меди в составе предшественника активного компонента составляет 1:1. Преобладающий диаметр пор в катализаторе 20 нм, удельная поверхность 170 м2/г.

Пример 4

Катализатор готовят аналогично примеру 1, но осаждение меди на носитель ведут в переходном гидродинамическом режиме, соответствующем значению центробежного критерия Рейнольдса 2500. Берут 515 см3 раствора аммиачно-карбонатного комплекса меди, 3,4 г сухого карбоната натрия, 114,1 г белой сажи и 32,6 г бемита так, что в массовом отношение белая сажа:бемит составляет 3,5:1.

Катализатор имеет состав, мас.%: медь (в пересчете на CuO) - 25; натрий (в пересчете на Na2O) - 1,0; остальное носитель - белая сажа и бемит в отношении 3,5:1. Массовое отношение оксида меди к основному гидрооксиду меди в составе предшественника активного компонента составляет 2,7:1. Преобладающий диаметр пор в катализаторе 24 нм, удельная поверхность 160 м2/г.

Испытания катализаторов проводили в многоканальной установке проточного типа при атмосферном давлении и объемной скорости подачи сырья 1,0 ч-1. Состав анольной фракции для испытаний образцов катализаторов приведен в таблице 1.

За меру активности принимали общую степень превращения (конверсии) циклогексанола в продукты реакции, селективность оценивали степенью превращения циклогексанола в циклогексанон и выражали также в %. О термостабильности катализатора судили по степени снижения активности при выдержке образцов катализаторов в реакционной среде при температуре 350°C.

Перед началом испытания катализатор восстанавливали в токе водорода при температурах от 150°C до 240°C, затем в реактор подавали сырье, устанавливали температуру 250°C и тренировали образец в течение 5 часов. После чего отбирали контрольные пробы продуктов дегидрирования. Затем температуру в реакторе доводили до 350°C и выдерживали при том же расходе сырья в течение 6 ч. После охлаждения реактора до 250°C снова отбирали контрольные пробы. Состав продуктов реакции определяли хроматографическим методом.

Устойчивость к коксоотложению оценивали периодом непрерывной работы образцов катализаторов, в течение которого снижение первоначальной активности при температуре 250°C достигало 25%.

Результаты испытаний приведены в таблице 2.

Как следует из данных, приведенных в таблице 2, период непрерывной работы катализатора, приготовленного по предлагаемому способу, в 2-2,4 раза превышает период непрерывной работы прототипа при сохранении высоких показателей селективности, активности и термостабильности.

Источники информации

1. Патент РФ №2218987, 7 МКИ B01J 23/72, 37/03, 31/06, 1998 г.

2. Патент РФ №2353425, B01J 23/72 (2006.1), 2008 г.

3. Патент РФ №2574730, B01J 23/72, 21/08, 21/02, С07В 41/06, 49/303 (2006.1), 2016 г.

Источник поступления информации: Роспатент

Показаны записи 31-33 из 33.
27.12.2018
№218.016.ac64

Способ приготовления универсального бифункционального катализатора для превращения синтез-газа и углеводородов в бензиновые фракции

Изобретение относится к области каталитического синтеза бензиновых фракций из синтез-газа и процессов превращения углеводородов в среде синтез-газа, в частности к способам приготовления универсального бифункционального катализатора (БФК) для упомянутых процессов, и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002676086
Дата охранного документа: 26.12.2018
20.03.2019
№219.016.e562

Способ получения никелевых пропиточных катализаторов для окислительно-восстановительных процессов, например для конверсии углеводородов

Изобретение относится к технологии приготовления катализаторов на основе никеля, стабилизированного активным оксидом алюминия, для окислительно-восстановительных процессов. Описан способ получения пропиточных никелевых катализаторов для окислительно-восстановительных процессов, например для...
Тип: Изобретение
Номер охранного документа: 0002396117
Дата охранного документа: 10.08.2010
29.06.2019
№219.017.a181

Катализатор парового риформинга углеводородов метанового ряда c-c и способ его приготовления

Изобретение относится к производству катализаторов для парового риформинга углеводородов метанового ряда C-C. Описан катализатор для парового риформинга углеводородов метанового ряда C-C, включающий активную часть, содержащую оксиды никеля, алюминия и носитель на основе оксида алюминия, причем...
Тип: Изобретение
Номер охранного документа: 0002462306
Дата охранного документа: 27.09.2012
Показаны записи 31-39 из 39.
25.06.2018
№218.016.66e8

Способ очистки сточных вод от растворенных органических загрязнений

Изобретение может быть использовано для очистки бытовых, технологических, поверхностных, сельскохозяйственных сточных вод от растворенных органических загрязнений. Способ очистки включает обработку сточных вод адсорбентом, разделение обработанных сточных вод на очищенные сточные воды и...
Тип: Изобретение
Номер охранного документа: 0002658404
Дата охранного документа: 21.06.2018
30.11.2018
№218.016.a23a

Способ получения циклогексанона, циклогексанола и циклогексилгидропероксида, установка для его осуществления и устройство абсорбции реакционных газов и предварительного окисления циклогексана

Изобретение относится к способу получения циклогексанона, циклогексанола и циклогексилгидропероксида, заключающемуся в превращении циклогексана в смесь, содержащую 0,5-4,0 масс. % циклогексилгидропероксида и 0,5-5,0 масс. % циклогексанола и циклогексанона в циклогексане, действием...
Тип: Изобретение
Номер охранного документа: 0002673541
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a265

Способ получения сорбента для очистки газов от сернистых соединений

Изобретение относится к химической технологии и может быть использовано при получении сорбентов сернистых соединений, используемых для очистки газов. Способ включает взаимодействие оксида цинка с аммиачно-карбонатным раствором с получением основного карбоната цинка, приготовление формовочной...
Тип: Изобретение
Номер охранного документа: 0002673533
Дата охранного документа: 27.11.2018
27.12.2018
№218.016.ac64

Способ приготовления универсального бифункционального катализатора для превращения синтез-газа и углеводородов в бензиновые фракции

Изобретение относится к области каталитического синтеза бензиновых фракций из синтез-газа и процессов превращения углеводородов в среде синтез-газа, в частности к способам приготовления универсального бифункционального катализатора (БФК) для упомянутых процессов, и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002676086
Дата охранного документа: 26.12.2018
20.03.2019
№219.016.e562

Способ получения никелевых пропиточных катализаторов для окислительно-восстановительных процессов, например для конверсии углеводородов

Изобретение относится к технологии приготовления катализаторов на основе никеля, стабилизированного активным оксидом алюминия, для окислительно-восстановительных процессов. Описан способ получения пропиточных никелевых катализаторов для окислительно-восстановительных процессов, например для...
Тип: Изобретение
Номер охранного документа: 0002396117
Дата охранного документа: 10.08.2010
20.03.2019
№219.016.e60b

Катализатор для конверсии углеводородов и способ его приготовления

Настоящее изобретение относится к производству катализаторов для конверсии углеводородов. Описан катализатор для конверсии углеводородов, включающий оксиды никеля, титана, бора, марганца, лантана, алюминия при следующем содержании компонентов, мас.%: оксид никеля - 8,5-24,5; оксид титана -...
Тип: Изобретение
Номер охранного документа: 0002359755
Дата охранного документа: 27.06.2009
10.04.2019
№219.017.03c5

Способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья

Изобретение относится к области химии и может быть использовано при получении синтез-газа. Углеводородное сырье в смеси с водяным паром пропускают через обогреваемые трубы реактора, внутри которых размещают катализатор в виде слоя гранул, включающих никель, причем участки поверхностей...
Тип: Изобретение
Номер охранного документа: 0002357919
Дата охранного документа: 10.06.2009
02.10.2019
№219.017.d036

Способ получения проницаемого керамического материала с высокой термостойкостью

Изобретение относится к изготовлению пористых легковесных изделий на основе кордиерита для получения носителей катализаторов и фильтров для очистки сточных вод от органических загрязнений. Способ получения проницаемого керамического материала с высокой термостойкостью заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002700386
Дата охранного документа: 16.09.2019
27.05.2020
№220.018.2147

Способ приготовления катализатора для дегидратации метилфенилкарбинола

Изобретение относится к способу приготовления катализатора на основе оксида алюминия, предназначенного для получения стирола из метилфенилкарбинола (1-фенилэтанола) (МФК) при повышенной температуре в присутствии катализатора дегидратации, в котором катализатор дегидратации включает формованные...
Тип: Изобретение
Номер охранного документа: 0002721906
Дата охранного документа: 25.05.2020
+ добавить свой РИД