×
29.06.2019
219.017.a181

КАТАЛИЗАТОР ПАРОВОГО РИФОРМИНГА УГЛЕВОДОРОДОВ МЕТАНОВОГО РЯДА C-C И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к производству катализаторов для парового риформинга углеводородов метанового ряда C-C. Описан катализатор для парового риформинга углеводородов метанового ряда C-C, включающий активную часть, содержащую оксиды никеля, алюминия и носитель на основе оксида алюминия, причем активная часть катализатора содержит оксид лантана при следующем содержании компонентов в катализаторе, мас.%: оксид никеля - 13,0-14,2; оксид алюминия - 1,52-1,62; оксид лантана - 0,25-0,50; носитель - остальное и носитель дополнительно содержит оксиды кальция и калия при следующем содержании компонентов, мас.%: оксид алюминия - 87,64-91,90; оксид кальция - 7,50-10,00; оксид калия - 0,60-2,36. Описан способ приготовления указанного выше катализатора, включающий пропитку носителя на основе оксида алюминия водными растворами нитратов никеля и алюминия, причем носитель готовят путем смешения глинозема, гидроксида алюминия, водных растворов основного углекислого калия и поливинилового спирта при массовом соотношении, %: 1:1,625:0,033-0,16:0,02-0,028 соответственно, формования, сушки при температуре 100-120°С в течение 2-3 часов, размола шихты, добавления оксида кальция в составе высокоглиноземистого цемента, графита и поливинилового спирта в массовом соотношении, %: 1,0:0,19-0,25:0,03-0,04 соответственно и 30,0-38,5% к общей массе носителя, уплотнения шихты, таблетирования, сушки при температуре 110-120°С до остаточной влажности не более 1,0% и прокалки при 1500-1550°С, затем готовый носитель двукратно пропитывают азотнокислыми растворами никеля и алюминия при массовом соотношении, %: 8-9:1 соответственно, а затем осуществляют третью пропитку азотнокислыми растворами никеля, алюминия и лантана при массовом соотношении, %: 8-9:1:0,3-0,7 соответственно, при этом после каждой пропитки проводят сушку катализатора при температуре 110-120°С в течение 3-4 часов и прокалку при 380-400°С до полного удаления оксидов азота. Технический результат - получен катализатор, проявляющий высокую селективность в течение его эксплуатации. 2 н.п. ф-лы, 3 табл., 13 пр.
Реферат Свернуть Развернуть

Настоящее изобретение относится к производству катализаторов для парового риформинга углеводородов метанового ряда C1-C2, например нефтезаводских газов, попутных газов, газов нефтехимических производств, используемых для производства водорода и синтез-газа.

При использовании данного вида сырья во время протекания реакции парового риформинга происходит термическое разложение или крекинг углеводородов C1-C4, образующийся углерод блокирует поверхность катализатора, резко снижает его активность. Для надежной и непрерывной в течение длительного времени работы установок по риформингу углеводородов метанового ряда C1-C4 без образования углерода необходим селективный катализатор, способный подавлять сажеобразование.

Известен катализатор для паровой конверсии углеводородных газов, включающий оксиды никеля, лантана, диоксид циркония, нанесенные на алюмомагниевый оксидный носитель, при соотношении компонентов, мас.%: оксид никеля 3,7-16,0; оксид лантана 0,1-4,1; диоксид циркония 0,1-2,2; алюмомагниевый носитель - остальное (патент RU №2185239, 7МКИ B01J 23/83, B01J 21/04, 2002 г.).

Недостатком данного катализатора является нестабильная и недостаточная во времени селективность катализатора, небольшой срок службы катализатора.

Наиболее близким по технической сущности и достигаемому эффекту является катализатор для парового риформинга нафты и нефтезаводских газов, включающий активную часть, содержащую оксиды никеля, алюминия, магния, кальция, калия при следующем содержании компонентов в катализаторе, мас.%; оксид никеля 3,0-8,0; оксид алюминия 0,65-1,80; оксид магния 0,45-1,65; оксид кальция 0,35-1,40; оксид калия 0,75-3,35 и носитель - остальное. В носитель катализатора вводится также каолин в количестве 2-8 мас.% (патент RU №2048910, 6МКИ B01J 23/78, C01B 3/38, 1995 г.)

Недостатком данного катализатора является нестабильная и недостаточная во времени селективность катализатора, небольшой срок службы катализатора.

Известен способ приготовления катализатора для паровой конверсии углеводородов путем пропитки носителя на основе α-оксида алюминия растворами азотнокислых солей никеля, алюминия и двойной азотнокислой соли лантана и магния формулы La2Mg3((NO3)12·24H2О, сушки при температуре ниже температуры плавления нитратов до полного удаления кристаллизационной воды и прокаливания в среде. содержащей смесь восстановителей - метана, оксида углерода и водорода (патент RU №2054963. 6МКИ B01J 23/76, B01J 37/02, C01B, 3/38, 1996 г.).

Недостатком данного способа приготовления является то, что при приготовлении пропиточного раствора используется сложная в приготовлении и недостаточно активная двойная соль лантана и магния, в качестве носителя используется α-оксид алюминия, имеющий кислый характер. Данные недостатки значительно снижают получение селективного и коксоустойчивого катализатора.

Наиболее близким по технической сущности и достигаемому эффекту является способ приготовления катализатора для парового риформинга нафты и нефтезаводских газов на основе соединений никеля, алюминия, кальция, магния, калия и носителя на основе окиси алюминия, приготовленного путем двух-, четырехкратной пропитки носителя водным раствором азотнокислых солей никеля, алюминия, кальция, магния, калия и после каждой пропитки сушки и прокалки катализатора при 450°С не менее 4 часов. В носитель катализатора вводится также каолин в количестве 2-8 мас.% (патент RU №2048910, 6МКИ B01J 23/78, С01В 3/38, 1995 г.).

Недостатком данного способа приготовления катализатора является нестабильная и недостаточная во времени селективность катализатора, небольшой срок службы катализатора.

Анализ известного способа приготовления катализаюра показывает, что щелочная добавка вносится в катализатор методом пропитки на носитель на основе оксида алюминия, имеющего кислый характер, практически не связана с носителем и постоянно мигрирует в виде окиси калия в конвертируемый газ, по мере улетучивания щелочной добавки увеличивается сажеобразование, увеличивается сопротивление трубчатой печи, повышается температура труб и снижается срок их эксплуатации. снижается активность катализатора и уменьшается срок его службы. С введением каолина вносится кремний, который уносится вместе с конвертированным газом и оседает на теплообменных поверхностях, снижая теплопередачу и эффективность процесса.

Задачей настоящего изобретения является разработка катализатора и способа его приготовления, позволяющего получать высокую селективность катализатора в течение всего времени эксплуатации, а не только в начальный период.

Для решения поставленной задачи предложен катализатор для парового риформинга углеводородов метанового ряда С14, включающий активную часть, содержащую оксиды никеля, алюминия, лантана и носитель при следующем содержании компонентов в катализаторе, мас.%: оксид никеля 13,0-14,2; оксид алюминия 1,52-1,62; оксид лантана 0,25-0,50; носитель - остальное и носитель при следующем содержании компонентов, мас.%: оксид алюминия 87,7-91,9; оксид кальция 7,5-10,0; оксид калия 0,6-2,36.

Сущность отличительных признаков предлагаемого вещества заключается в том, что катализатор дополнительно содержит лантан, в результате происходит снижение накопления сажи на катализаторе. Носитель содержит щелочную и щелочноземельную добавки (оксид калия и оксид кальция), что позволяет увеличить селективность катализатора.

Для решения поставленной задачи предложен способ приготовления катализатора для парового риформинга углеводородов метанового ряда С14, включающий приготовление носителя путем смешения глинозема, гидроксида алюминия, водных растворов основного углекислого калия и поливинилового спирта в массовом соотношении, %: 1,0:1,625:0,033-0,16:0,02-0,028 соответственно, формования, сушки при температуре 100-120°С в течение 2-3 часов, размола шихты, добавления оксида кальция в составе высокоглиноземистого цемента, графита и поливинилового спирта в массовом соотношении, %: 1,0:0,19-0,25:0,03-0,04 соответственно и 30,0-38,5% к общей массе носителя, уплотнения шихты, таблетирования, сушки при температуре 110-120°С до остаточной влажности не более 1,0% и прокалки при 1500-1550°С, двухкратной пропитки носителя растворами азотнокислых солей никеля и алюминия при массовом соотношении, %: 8-9:1 соответственно и третьей пропитки растворами азотнокислых солей никеля, алюминия и лантана при массовом соотношении, %: 8-9:1:0,3-0,7 соответственно, после каждой пропитки сушки катализатора при температуре 100-120°С в течение 3-4 часов и прокалки при 380-400°С до полного удаления окислов азота.

Сущность предлагаемого способа приготовления катализатора заключается в том, что для увеличения селективности процесса, снижения сажеобразования при паровом риформинге углеводородов метанового ряда C1-C4, при приготовлении катализатора непосредственно в носитель вводится щелочная добавка в виде основной углекислой соли калия (К2СО3), образующая при смешении с глиноземом и гидрооксидом алюминия после прокалки прочное соединение КАl11О17, таким образом предотвращается унос калия из катализатора, селективность катализатора по мере роста содержания оксида калия в носителе увеличивается. Внесение щелочноземельного металла - оксида кальция в составе высокоглиноземистого цемента в носитель позволяет обеспечить основной характер носителя, что и позволяет снизить сажеобразование. Для снижения отрицательного воздействия щелочных и щелочноземельных металлов на активность никелевого катализатора в пропиточном растворе увеличено содержание нитрата никеля и уменьшено содержание нитрата алюминия. При условии трехкратной пропитки в состав катализатора вносится 13,0-14,2 мас.% оксида никеля.

Ниже приведены конкретные примеры осуществления предлагаемого способа приготовления катализатора.

Пример 1. Готовят носитель для катализатора. В бункер формователя ПФШ-100 загружают 40 кг глинозема, 65 кг гидроксида алюминия, перемешивают сухие компоненты в течение 15 минут, затем добавляют 10 л водного раствора, содержащего 1,33 кг поташа (основной углекислой соли калия - К2СО3) и 16 л 7% водного раствора поливинилового спирта (ПВС) при массовом соотношении компонентов 1,0:1,625:0,033:0,028 соответственно. Полученную массу перемешивают в течение 20 минут, затем формуют в виде «жгутов» диаметром 5-10 мм., сушат при температуре 100-120°С в течение 2-3 часов, полученную массу размалывают, загружают в плужный смеситель, добавляют 35,7 кг высокоглиноземистого цемента марки ВГКЦ-75-05-35 К, 9 кг графита, все содержимое перемешивают 10-15 минут, затем шихту переносят в Z-смеситель. добавляют к ней 21 л 7% водного раствора поливинилового спирта при массовом соотношении компонентов 1,0:0,25:0,04 соответственно и в 30% к общей массе в пересчете на сухое вещество. Содержимое перемешивают в течение 10-15 минут, затем массу уплотняют путем 2-3-кратного пропускания через рабочие валки уплотнителя ВН-211-Н. Шихту таблетируют в виде таблеток (кольца) предпочтительного размера Д нар.×d внутр.×Н=15×6х×2 мм. Затем таблетки сушат при температуре 110-120°С до остаточной влажности не более 1,0% и прокаливают при температуре 1500-1550°С. Механическая прочность носителя составляет 330 кг/см2. Получают носитель состава, мас.%: Аl2О3 - 91,9; CaO - 7,5: K2O - 0.6.

Готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 8:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 225 г/дм3 и Аl2О3 - 28,0 г/дм). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 8:1:0,03 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 225 г/дм3, Аl2О3 - 28.0 г/дм3 и La2О3 - 8.5 г/дм3). После каждой пропитки катализатор сушат при температуре 110-120°С в течение 3-4 часов и прокаливают при температуре 380-400°С до полного удаления оксидов азота. Получают катализатор следующего состава, мас.%: NiO - 13,1; Lа2О3 - 0,28: Аl2О3 - 1,62: носитель -остальное. Механическая прочность катализатора составляет 510 кг/см2.

Пример 2. Способ осуществляют по примеру 1, но для приготовления носителя берут исходные компоненты в следующем количестве: 40 кг глинозема, 65 кг гидроксида алюминия, 13 л водного раствора, содержащего 4,0 кг поташа (основной углекислой соли калия - K2СО3) и 13 л 7%-ного водного раствора поливинилового спирта (ПВС) при массовом соотношении компонентов 1,0:1,625:0,1:0,02 соответственно. Перед таблетированием в массу добавляют 45,6 кг высокоглиноземистого цемента марки ВГКЦ-75-05-35 К, 10 кг графита, 23 л 7%-ного водного раствора поливинилового спирта, при массовом соотношении компонентов 1:0,22:0,04 соответственно и в 34,4% к общей массе в пересчете на сухое вещество. Получают носитель состава, мас.%: Аl2О3 - 89,60: СаО - 8,75; К2О - 1.65. Механическая прочность носителя составляет 350 кг/см2.

Готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 8:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 220 г/дм3 и Аl2О3 - 28,0 г/дм3).Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 8:1:0,5 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 225 г/дм3 и Аl2О3 - 28,0 г/дм3 и Lа2О3 14,0 г/дм3). Получают катализатор следующего состава, мас.%: NiO - 13,2: Аl2О3 - 1,60: La2О3 - 0,37: носитель - остальное. Механическая прочность катализатора составляет 530 кг/см2.

Пример 3. Способ осуществляют по примеру 1, но для приготовления носителя берут исходные компоненты в следующем количестве: 40 кг глинозема, 65 кг гидроксида алюминия, 15 л водного раствора, содержащего 6,38 кг поташа (основной углекислой соли калия - К2СО3) и 11 л 7%-ного водного раствора поливинилового спирта (ПВС) при массовом соотношении компонентов 1,0:1,625:0,16:0,02 соответственно. Перед таблетированием в массу добавляют 57,3 кг высокоглиноземистого цемента марки ВГКЦ-75-05-35 К, 11 кг графита, 25 л 7%-ного водного раствора поливинилового спирта, при массовом соотношении компонентов 1:0,19:0,03 соответственно и в 38,5% к общей массе в пересчете на сухое вещество. Получают носитель состава, мас.%: Аl2О3 - 87,64: СаО - 10,0; К2О - 2,36. Механическая прочность носителя составляет 365 кг/см2.

Готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 8:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 225 г/дм3 и Al2O3 - 28,0 г/дм). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 8:1:0,7 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 225 г/дм3 и Аl2О3 - 28.0 г/дм3 и La2O3 20,0 г/дм3). Получают катализатор следующего состава, мас.%: NiO - 13,0; Аl2О3 - 1,59: Lа2О3 - 0,50: носитель - остальное.

Механическая прочность катализатора составляе 550 кг/см2.

Пример 4. Способ осуществляют по примеру 1, но готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 8,5:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 230 г/дм3 и Аl2О3 - 27,0 г/дм3). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 8,5:1:0,3 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 230 г/дм. Аl2О3 - 27,0 г/дм3 и Lа2О3 8.5 г/дм3. После каждой пропитки катализатор сушат при температуре 110-120°С в течение 3-4 часов и прокаливают при температуре 380-400°С до полного удаления окислов азота. Получают катализатор следующего состава, мас.%: NiO - 13.5; Аl2O3 - 1,58; La2О3 - 0.26; носитель - остальное. Механическая прочность катализатора составляет 515 кг/см2.

Пример 5. Способ осуществляют по примеру 2. но готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 8,5:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 230 г/дм3 и Аl2О3 - 27,0 г/дм3). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 8,5:1:0,5 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 230 г/дм3, Аl2О3 - 27,0 г/дм3 и Lа2О3 - 14,0 г/дм3. После каждой пропитки катализатор сушат при температуре 110-120°С в течение 3-4 часов и прокаливают при температуре 380-400°С до полного удаления окислов азота. Получают катализатор следующего состава, мас.%: NiO - 13,4; Аl2О3 - 1,59; La2О3 - 0,35; носитель - остальное. Механическая прочность катализатора составляет 535 кг/см2.

Пример 6. Способ осуществляют по примеру 3, но готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 8,5:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 230 г/дм3 и Аl2О3 - 27.0 г/дм3). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 8,5:1:0,7 в пересчете на закись никеля. оксид алюминия и оксид лантана (массовая концентрация NiO - 230 г/дм3. Аl2О3 - 27,0 г/дм3 и La2О3 - 19,0 г/дм3. После каждой пропитки катализатор сушат при температуре 110-120°С в течение 3-4 часов и прокаливают при температуре 380-400°С до полного удаления окислов азота. Получают катализатор следующего состава, мас.%: NiO - 13.5: Аl2О3 - 1,58: La2O3 - 0,50; носитель - остальное. Механическая прочность катализатора составляет 555 кг/см2.

Пример 7. Способ осуществляют по примеру 1, но готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 9,0:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 240 г/дм3 и Аl2О3 - 26.0 г/дм3). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 9,0:1:0,3 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 240 г/дм, Аl2О3 - 26,0 г/дм3 и La2О3 - 8,0 г/дм3. После каждой пропитки катализатор сушат при температуре 110-120°С в течение 3-4 часов и прокаливают при температуре 380-400°С до полного удаления окислов азота. Получают катализатор следующего состава, мас.%: NiO - 14,50; Аl2О3 - 1,52; Lа2О3 - 0,25; носитель - остальное. Механическая прочность катализатора составляет 520 кг/см2.

Пример 8. Способ осуществляют по примеру 2, но готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 9,0:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 240 г/дм3 и Аl2О3 - 26,0 г/дм3). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 9,0:1:0,5 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 240 г/дм3, Аl2О3 - 26,0 г/дм и La2O3 - 13,0 г/дм3). После каждой пропитки катализатор сушат при температуре 110-120°С в течение 3-4 часов и прокаливают при температуре 380-400°С до полного удаления окислов азота. Получают катализатор следующего состава, мас.%: NiO - 14,2; Аl2О3 - 1,56; Lа2О3 - 0,34; носитель - остальное. Механическая прочность катализатора составляет 540 кг/см2.

Пример 9. Способ осуществляют по примеру 3, но готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 9,0:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 240 г/дм3 и Аl2О3 - 26,0 г/дм3). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 9,0:1:0,7 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 240 г/дм3, Аl2О3 - 26,0 г/дм3 и La2O3 - 18,0 г/дм3). После каждой пропитки катализатор сушат при температуре 110-120°С в течение 3-4 часов и прокаливают при температуре 380-400°С до полного удаления окислов азота. Получают катализатор следующего состава, мас.%: NiO - 14.1; Аl2О3 - 1-55; La2О3 - 0,47: носитель - остальное. Механическая прочность катализатора составляет 560 кг/см2.

Пример 10 /ниже нижнего предела компонентов по оксидам никеля, калия и лантана/. Способ осуществляют по примеру 1, но для приготовления носителя берут исходные компоненты в следующем количестве: 40 кг глинозема, 65 кг гидроксида алюминия, перемешивают сухие компоненты в течение 15 минут, затем добавляют 10 л водного раствора, содержащего 0,52 кг поташа (основной углекислой соли калия - К2СО3) и 16 л 7% водного раствора поливинилового спирта (ПВС) при массовом соотношении компонентов 1,0:1,625:0,013:0,028 соответственно. Перед таблетированием в массу добавляют 35.5 кг высокоглиноземистого цемента марки ВГКЦ-75-05-35 К, 9 кг графита, 23 л 7% водного раствора поливинилового спирта при массовом соотношении компонентов 1,0:0,25:0,04 соответственно и в 30% к общей массе в пересчете на сухое вещество. Механическая прочность носителя составляет 330 кг/см2. Получают носитель состава, мас.%: Аl2О3 - 92,20: СаО - 7,5; К2О - 0,23. Механическая прочность носителя составляет 330 кг/см2.

Готовый носитель дважды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 7: 1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 200 г/дм3 и Аl2О3 - 28.5 г/дм). Третью пропитку носителя проводят активирующим раствором, содержащим азотнокислые соли никеля, алюминия и лантана в массовом соотношении 7:1:0,24 в пересчете на закись никеля, оксид алюминия и оксид лантана (массовая концентрация NiO - 200 г/дм3, Аl2O3 - 28,5 г/дм3 и La2О3 - 6,8 г/дм3). Получают катализатор следующего состава, мас.%: NiO - 12,0: Аl2О3 - 1,70; Lа2О3 - 0,20; носитель - остальное. Механическая прочность катализатора составляет 510 кг/см2.

Пример 11 /без пропитки солью лантана/. Способ осуществляют по примеру 1, но готовый носитель трижды пропитывают активирующим раствором, содержащим азотнокислые соли никеля и алюминия при их массовом соотношении 8:1 в пересчете на закись никеля и окись алюминия (массовая концентрация NiO - 225 г/дм3 и Аl2О3 - 28,0 г/дм). После каждой пропитки катализатор сушат при температуре 110-120°С в течение 3-4 часов и прокаливают при температуре 380-400°С до полного удаления окислов азота. Получают катализатор следующего состава, мас.%: NiO - 13,26; Аl2О3 - 1,70: носитель - остальное. Механическая прочность катализатора составляет 515 кг/см2

Пример 12 /по прототипу/. Для приготовления 1000 г катализатора на 838,0 г керамического носителя (α-Аl2O3 с содержанием 8,0 мас.% каолина) пористостью 0,25 см2/г за четыре пропитки водным раствором наносится 311, 4 г никеля азотнокислого шестиводного Ni(NO3)2·6H2О (80,0 г NiO):132,5 г алюминия азотнокислого девятиводного Al (NO3)3·9H2О (18,0 г Аl2О3): 59 г кальция азотнокислого четырехводного Ca(NO3)·4H2О (14,0 г СаО): 105,9 г магния азотнокислого шестиводного Mg(NO3)2·6Н2О (16,5 г MgO) и 71,9 г калия азотнокислого безводного KNO3 (33,5 г K2О). После каждой пропитки катализатор сушат и прокаливают при температуре 450°С не менее 4 часов. Получают катализатор следующего состава, мас.%: NiO - 8,0: MgO - 1,65; Аl2О3 - 1,80; СаО - 1,40: К2О - 3,35: носитель - остальное. Механическая прочность катализатора составляет 515 кг/см2.

Пример 13 /по прототипу, без каолина в носителе/. Для приготовления 1000 г катализатора на 903.0 г керамического носителя (α-Аl2О3) пористостью 0.32 см3/г за две пропитки водным раствором наносится 233. 6 г никеля азотнокислого шестиводного Ni(NO3)2·6H2О (60,0 г NiO); 77,53 г алюминия азотнокислого девятиводного Аl (NO3)3·9Н2O (18,0 г Аl2О3); 31,6 г кальция азотнокислого четырехводного Ca(NO3)2·4Н2O (7,5 г СаО); 44,59 г магния азотнокислого шестиводного Mg(NO3)2·6H2О (7,0 г MgO) и 25,8 г калия азотнокислого безводного KNO3 (12,0 г К2O). После каждой пропитки катализатор сушат и прокаливают при температуре 450°С не менее 4 часов. Получают катализатор следующего состава, мас.%: NiO - 6,0; MgO - 0,70; Аl2О3 - 1,05: СаО - 0,75; К2О - 1,20; носитель - остальное. Механическая прочность катализатора составляет 500 кг/см2.

Пример на предельные значения компонентов по максимуму не приведен, так как по данному способу приготовления можно внести максимально возможные количества никеля 14.2 мас.% и щелочной добавки 2.36 мас.%.

В таблицах 1, 2, 3 приведены технико-экономические характеристики разработанного катализатора и прототипа.

Испытание активности катализатора проводили на лабораторной установке проточного типа. В реактор, загруженный катализатором, предварительно восстановленным при температуре 500°С в течение 6 часов водородом, в количестве 5 мл подавали попутный нефтяной газ следующего состава, об.%: СН4 - 72,5; С2Н6 - 9,8; С3Н8 - 7,5; С4Н8 - 8,3; (N2+СО) - 1,9. Испытания проводили в течение 4 часов при температуре 600°С, давлении 1 атм объемной скорости 4000 час-1, соотношении пар: углерод, равном 2.5. Данные по испытанию активности катализатора приведены в таблице 2. В таблице также показана динамика изменения активности катализатора во времени его эксплуатации, которая определялась кипячением при температуре 100°С в течение 3 часов. Активность катализатора после кипячения по примерам 10-13 значительно снизилась.

Селективность (устойчивость к процессу зауглероживания) катализаторов определяли методом, в основу которого положено определение изменения массы предварительно восстановленного образца катализатора в реакторе в результате отложения на нем углерода при пропускании через реактор тестовой смеси метана и диоксида углерода в следующем соотношении СН4:СО2=30:70. При программируемом нагреве восстановленного катализатора со скоростью 5 градусов в минуту в тестовой смеси от 400 до 500-600°С наблюдается увеличение массы образца в результате отложения углерода. Масса катализатора достигает максимума в области температур 600-700°С. При дальнейшем нагреве этот углерод газифицируется, масса образца снижается и при температуре 800-900°С достигает первоначальной. Этот характерный эффект накопления и удаления углерода называется пиком зауглероживания. За характеристику селективности (устойчивости к зауглероживанию) катализатора принимали высоту пика зауглероживания, т.е. максимальное количество углерода, образующегося на катализаторе в процентах от исходной массы восстановленного образца. Отсюда очевидно, чем выше пик зауглероживания, тем ниже селективность катализатора.

В таблице 3 приведены результаты испытаний по селективности предлагаемого катализатора. Существует метод, который позволяет получить динамику изменения селективности катализаторов во времени его эксплуатации. Он заключается в следующем. Берут таблетку катализатора, содержащую определенное количество оксида калия, определяют ее селективность в исходном состоянии, затем катализатор кипятят при температуре 100°С в течение 3 часов и определяют в ней количество оксида калия. Как видно из данных таблицы, содержание щелочной добавки - оксида калия в предложенном способе в ходе кипячения практически не изменилось, сохранилась на прежнем уровне и селективность в отличие от прототипа, в котором щелочная добавка вносилась методом пропитки носителя. Анализ также показывает, что данные по примеру 11 /прототипу/ подтверждают о положительном влиянии лантана на селективность катализатора.

Вывод о положительном результате относительно поставленной задачи. Таким образом, настоящий катализатор и способ его приготовления позволяют увеличить селективность катализатора в течение всего времени его эксплуатации, а не только в начальный период.

Источники информации

1. Патент RU №2185239, 7МКИ B01J 23/83, В01J 21/04, 2002 г.

2. Патент RU №2054963, 6МКИ B01J 23/76, B01J 37/02, C01B 3/38, 1996 г.

3. Патент RU №2048910, 6МКИ B01J 23/78, C01B 3/38, 1995 г. /прототип/.

Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
20.09.2014
№216.012.f6b3

Способ получения катализатора для процесса метанирования

Изобретение может быть использовано в химической промышленности для тонкой очистки водородсодержащих газовых смесей от оксидов углерода путем их гидрирования до метана. Изобретение относится к способу получения катализатора для процесса метанирования, включающему пропитку носителя на основе...
Тип: Изобретение
Номер охранного документа: 0002528988
Дата охранного документа: 20.09.2014
27.11.2014
№216.013.0b19

Способ каталитической очистки водородсодержащей газовой смеси от оксидов углерода

Изобретение относится к области химии и может быть использовано для каталитической очистки водородсодержащей газовой смеси от оксидов углерода. Способ каталитической очистки водородсодержащей газовой смеси от оксидов углерода, посредством их гидрирования до метана при пропускании смеси через...
Тип: Изобретение
Номер охранного документа: 0002534249
Дата охранного документа: 27.11.2014
25.08.2017
№217.015.ab0b

Способ приготовления медьсодержащего катализатора для дегидрирования циклогексанола в циклогексанон

Изобретение может быть использовано в химической промышленности в производстве капролактама. Изобретение относится к способу приготовления медьсодержащего катализатора для дегидрирования циклогексанола в циклогексанон, включающему нанесение предшественника активного компонента из суспензии,...
Тип: Изобретение
Номер охранного документа: 0002612216
Дата охранного документа: 03.03.2017
13.02.2018
№218.016.2598

Способ получения медьцинкхромалюминиевого катализатора

Изобретение относится к получению катализаторов на основе соединений меди, цинка, алюминия и хрома для низкотемпературной конверсии оксида углерода водяным паром, катализатор может быть использован для низкотемпературного синтеза метанола, процессов гидрирования нитробензола, дегидрирования...
Тип: Изобретение
Номер охранного документа: 0002642788
Дата охранного документа: 26.01.2018
20.03.2019
№219.016.e562

Способ получения никелевых пропиточных катализаторов для окислительно-восстановительных процессов, например для конверсии углеводородов

Изобретение относится к технологии приготовления катализаторов на основе никеля, стабилизированного активным оксидом алюминия, для окислительно-восстановительных процессов. Описан способ получения пропиточных никелевых катализаторов для окислительно-восстановительных процессов, например для...
Тип: Изобретение
Номер охранного документа: 0002396117
Дата охранного документа: 10.08.2010
Показаны записи 1-6 из 6.
19.01.2018
№218.016.0d04

Способ получения водородсодержащего газа для производства метанола и устройство для его осуществления

Группа изобретений относится к способу получения водородсодержащего газа для производства метанола из углеводородных газов (метана, природного газа, попутных нефтяных газов, сланцевых газов) и устройству для осуществления способа, и могут быть использованы в химической, нефте- и газохимической...
Тип: Изобретение
Номер охранного документа: 0002632846
Дата охранного документа: 10.10.2017
17.02.2018
№218.016.2b00

Способ получения термически стабильного носителя для катализатора сжигания монотоплива

Изобретение относится к области химии и может быть использовано для получения носителей для катализаторов, обладающих высокой площадью поверхности и термостабильностью в условиях сверхвысоких температур, например, в процессах сжигания монотоплива, в том числе "зеленого топлива" на основе...
Тип: Изобретение
Номер охранного документа: 0002642966
Дата охранного документа: 30.01.2018
10.04.2019
№219.016.ffe1

Фронтовое устройство камеры сгорания и способ организации рабочего процесса в ней

Изобретение относится к устройствам для сжигания топливовоздушной смеси в воздушно-реактивных двигателях и газотурбинных установках. Фронтовое устройство камеры сгорания содержит центральную пневматическую форсунку основной зоны горения, струйный смеситель с отверстиями для подвода воздуха,...
Тип: Изобретение
Номер охранного документа: 0002285865
Дата охранного документа: 20.10.2006
10.04.2019
№219.017.022c

Способ распыливания жидкого углеводородного топлива и форсунка для распыливания

Способ распыливания жидкого углеводородного топлива в потоке воздуха, сжатого в компрессоре газотурбинного двигателя или газотурбинной установки, проходящего через форсунку, на вход которой поступает поток топлива с низким напором, характеризующийся тем, что поступающий поток топлива разделяют...
Тип: Изобретение
Номер охранного документа: 0002348823
Дата охранного документа: 10.03.2009
10.04.2019
№219.017.047b

Центробежно-пневматическая форсунка

Центробежно-пневматическая форсунка предназначена для работы в камерах сгорания наземных газотурбинных установок и реактивных двигателей. Центробежно-пневматическая форсунка содержит полый корпус воздушного канала с участком сужения, снабженный лопаточным завихрителем воздуха на входе,...
Тип: Изобретение
Номер охранного документа: 0002374561
Дата охранного документа: 27.11.2009
19.06.2019
№219.017.8ab4

Топливовоздушный модуль фронтового устройства камеры сгорания гтд

Топливовоздушный модуль фронтового устройства камеры сгорания ГТД содержит систему подготовки и подачи жидкого топлива, состоящую из пилотного и основного контуров и сопряженных с ними воздушных каналов. Пилотный контур включает центральную форсунку с магистралью подвода топлива, коаксиально...
Тип: Изобретение
Номер охранного документа: 0002439435
Дата охранного документа: 10.01.2012
+ добавить свой РИД