×
25.08.2017
217.015.aa65

Результат интеллектуальной деятельности: Автономная тепловая пушка

Вид РИД

Изобретение

Аннотация: Изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления. Технический результат достигается предлагаемой автономной тепловой пушкой, включающей цилиндрический корпус, внутри которого по ходу движения воздуха коаксиально установлены вентилятор с электродвигателем, горелка с инжектором, соединенная с подводящим газопроводом, цилиндрическая камера сгорания, совмещенная с теплообменником, соединенная с инжектором, кольцевую тепловую камеру, очистной насадок, заполненный гранулами металлургической пемзы, изготовленной из металлургических шлаков, при этом поверхность цилиндрической камеры сгорания выполнена с горизонтальными прямоугольными гофрами, образующими горизонтальные прямоугольные гнезда, в которые частично утоплены термоэлектрические звенья, состоящие из прямоугольных вставок, внутри которых помещены ряды, состоящие из расположенных параллельно термоэмиссионных преобразователей, каждый из которых представляет собой пару параллельных проволочных отрезков, выполненных из разных металлов, спаянных на концах между собой, термоэлектрические звенья попарно соединены между собой перемычкой и электрическим конденсатором, образуя термоэлектрические секции, которые также последовательно соединены между собой через электрические конденсаторы, образуя термоэлектрический блок, соединенный с токовыводами, преобразователем, аккумулятором и электродвигателем вентилятора. 8 ил.

Предлагаемое изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления для нагревания воздуха в бытовых и производственных помещениях.

Известен нагреватель воздуха, содержащий корпус с сетчатыми входом и выходом, кожухом, образующим с корпусом теплозащитную полость, размещенный внутри корпуса на стойках осевой вентилятор с электродвигателем, соосные вентилятору теплоэлектронагревательные элементы, выполненные в виде спиралей, закрепленных на кронштейнах, систему управления, связанную электрически с источником питания [Патент РФ №2122689, F24H3/04, F24D13/00, 1998].

Основным недостатком известного воздушного нагревателя является невозможность нагрева воздуха и его подачи без внешнего источника электрической энергии и обусловленное этим ее значительное потребление, что снижает эффективность его работы.

Более близким к предлагаемому изобретению является газовый воздухонагреватель (газовая тепловая пушка), содержащий газосжигающее устройство (горелку), камеры сгорания газа и смешения очищенных продуктов сгорания с нагреваемым воздухом, вентилятор-нагнетатель с электродвигателем, прикрепленный к камере сгорания теплообменный аппарат в форме трубы, на внешней поверхности которой смонтированы сетчатые интенсификаторы, на конце теплообменного аппарата установлен каталитический насадок, на входе в который выполнен газоподающий патрубок для подвода дополнительного объема газа [Патент РФ №2145050, F26B23/02, F24H3/00, 2000].

Основными недостатками известного газового воздухонагревателя являются невозможность подачи воздуха без внешнего источника электрической энергии и регенерации каталитического насадка, что не позволяет использовать его в автономном режиме и снижает экономическую и экологическую эффективность.

Техническим результатом предлагаемого изобретения является увеличение экономической и экологической эффективности автономной тепловой пушки.

Технический результат достигается предлагаемой автономной тепловой пушкой, включающей цилиндрический корпус, снабженный опорами, внутри которого по ходу движения воздуха коаксиально установлены вентилятор с электродвигателем, горелка с инжектором, соединенная с подводящим газопроводом, цилиндрическая камера сгорания, совмещенная с теплообменником, внутренний торец которой герметически соединен с инжектором, наружный торец выступает на расстояние L от торца корпуса, образуя участок, перфорированный продольными щелями, а между наружной поверхностью цилиндрической камеры сгорания и стенкой цилиндрического корпуса, расположена кольцевая тепловая камера, сзади цилиндрического корпуса расположен насадок для очистки продуктов сгорания, состоящий из наружной и внутренней перфорированных оболочек с полостью между ними, внутренняя оболочка которого выступает своим торцом на расстояние L от наружной оболочки, образуя участок, перфорированный также продольными щелями, который надет на аналогичный участок цилиндрической камеры сгорания, причем вышеупомянутая полость заполнена гранулами металлургической пемзы, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, при этом поверхность цилиндрической камеры сгорания–теплообменника кроме перфорированного участка выполнена с горизонтальными прямоугольными гофрами, образующими горизонтальные прямоугольные гнезда, в которые частично утоплены термоэлектрические звенья, состоящие из прямоугольных вставок, выполненных из термостойкого диэлектрического материала (например, керамики), внутри которых помещены ряды, состоящие из расположенных параллельно термоэмиссионных преобразователей, каждый из которых представляет собой пару параллельных проволочных отрезков, выполненных из разных металлов М1 и М2, спаянных на концах между собой с образованием некоторого зазора шириной Δ, причем термоэлектрические звенья установлены в гнездах таким образом, чтобы большая часть каждого термоэмиссионного преобразователя в рядах омывалась приточным воздухом, подаваемым вентилятором, термоэлектрические звенья у инжектора попарно соединены между собой перемычкой, а перед перфорированным участком электрическим конденсатором, образуя термоэлектрические секции, которые, в свою очередь, последовательно соединены между собой тоже через электрические конденсаторы, образуя термоэлектрический блок в форме разомкнутого кольца, а первый и последний из вышеупомянутых конденсаторов термоэлектрического блока соединены с токовыводами, которые, в свою очередь, соединены через преобразователь и аккумулятор с электродвигателем вентилятора.

На фиг. 1–4 представлены общий вид и разрезы автономной тепловой пушки (АТП), на фиг.5–8–узлы стыковки очистной насадки и термоэлектрических звеньев с камерой сгорания АТП.

Предлагаемая АТП содержит цилиндрический корпус 1, снабженный опорами 2, внутри корпуса по ходу движения воздуха коаксиально установлены вентилятор 3 с электродвигателем 4, горелка 5 с инжектором 6, соединенная с подводящим газопроводом (на фиг. 1–8 не показан), цилиндрическая камера сгорания, совмещенная с теплообменником (КСТО) 7, внутренний торец которой герметически соединен с инжектором 6, наружный торец выступает на расстояние L от торца корпуса трубы 1, образуя участок 8, перфорированный продольными щелями 9, а между наружной поверхностью КСТО 7 и стенкой корпуса 1 расположена кольцевая тепловая камера 10, сзади цилиндрического корпуса 1 размещается насадок для очистки продуктов сгорания 11, состоящий из наружной и внутренней перфорированных оболочек 12 и 13 соответственно, с полостью 14 между ними, внутренняя оболочка 13 которого выступает своим торцом на расстояние L от наружной оболочки 12, образуя участок 15, перфорированный также продольными щелями 9, который надет на участок 8 КСТО 7, причем полость 14 заполнена гранулами металлургической пемзы 16, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, при этом поверхность КСТО 7 кроме участка 8 выполнена с горизонтальными прямоугольными гофрами, образующими горизонтальные прямоугольные гнезда 17, которые увеличивают внешнюю поверхность КСТО 7 в несколько раз по сравнению с цилиндрической, что значительно увеличивает скорость теплопередачи через стенку КСТО. В гнезда 17 частично утоплены термоэлектрические звенья (ТЭЗ) 18, состоящие из прямоугольных вставок 19, выполненных из термостойкого диэлектрического материала (например, керамики), внутри которых помещены ряды 20, состоящие из расположенных параллельно термоэмиссионных преобразователей (ТЭП) 21. Каждый ТЭП 21 представляет собой пару параллельных проволочных отрезков 22 и 23, выполненных из разных металлов М1 и М2, спаянных на концах между собой с образованием некоторого зазора шириной Δ (значение Δ выбирается из условий надежной изоляции отрезков 22 и 23), причем ТЭЗ 18 установлены в гнездах 17 таким образом, чтобы большая часть каждого ТЭП 21 рядов 20 омывалась приточным воздухом, подаваемым вентилятором 3, причем ТЭЗ 18 у инжектора 6 попарно соединены между собой перемычкой 24, а перед участком 8 электрическим конденсатором 25, образуя термоэлектрические секции (ТЭС) 26, которые, в свою очередь, последовательно соединены между собой тоже через электрические конденсаторы 27, образуя термоэлектрический блок (ТЭБ) 28 в форме разомкнутого кольца, а первый и последний из вышеупомянутых конденсаторов 27 ТЭБ 28 соединены с токовыводами 29 и 30, которые, в свою очередь, соединены через преобразователь и аккумулятор (на фиг. 1–8 не показаны) с электродвигателем 4.

В основу работы предлагаемой АТП положено использование эффекта термоэлектричества для обеспечения работы вентилятора и гранулированного доменного шлака в качестве адсорбента для вредных компонентов выхлопных газов из КСТО 7. Так как в ТЭЗ 18 помещены ряды 19, состоящие из ТЭП 21, изготовленных из проволочных отрезков 22 и 23, выполненных из металлов М1 и М2, спаянных на концах между собой, то при нагреве одних спаянных концов, помещенных в гнезда 17, и охлаждении противоположных приточным воздухом из вентилятора 3, в ТЭЗ 18 возникает термоэлектричество [С.Г. Калашников. Электричество. – М: Наука, 1970, с. 502–506].

Использование гранулированного доменного шлака (металлургической пемзы) 16 в качестве адсорбента основано на высоком значении его модуля основности, который придает гранулам металлургической пемзы 15 основные свойства [Строительные материалы. Справочник. Под ред. Болдырева А. С. и др. –М.: Стройизд.,1989, с. 423; Домокеев А. К. Строительные материалы. – М.: Высш. школа, 1989, с. 163], позволяющие сорбировать на поверхности шлака вещества, обладающие кислыми свойствами, к которым относятся вредные компоненты газообразных продуктов сгорания топлива АТП (природного газа или солярового масла), а именно оксиды азота (NOx), оксиды серы (SOx), оксиды углерода (СО).

Автономная тепловая пушка (АТП), представленная на фиг. 1–8, работает следующим образом. Топливо, например природный газ, из газового баллона или газопровода (на фиг. 1–8 не показаны) поступает в горелку 5, откуда струя газа поступает в инжектор 6, засасывая воздух, необходимый для горения, после чего газовоздушная смесь направляется в КСТО 7, где в начальном участке КСТО 7 происходит ее зажигание и горение, а далее до конечного участка 8 происходит охлаждение образовавшихся горячих выхлопных газов приточным воздухом, подаваемым вентилятором 3, выхлопные газы далее поступают в насадок для очистки продуктов сгорания 11, полость 14 которого заполнена гранулами металлургической пемзы 16, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм. Поток выхлопных газов проходят через отверстия в перфорированной внутренней оболочки 12 насадка 11 и многократно попадают на поверхность гранул 16 и вовнутрь их, затем очищается от вредных примесей (NOx, SOx, СО), которые сорбируются на поверхности и внутри гранул 16. Адсорбированные из отработавших газов оксиды азота и серы в порах гранул 16 обладают повышенной реакционной способностью, обусловленной их взаимодействием с поверхностью адсорбента–гранул 16 шлаковой пемзы [Неницеску К. Общая химия. – М.: Мир, 1968, с. 298], поэтому окисляются кислородом (кислород присутствует в выхлопных газах в результате избытка воздуха, подаваемого на сжигание топлива) со скоростью, большей, чем в газовой фазе, с образованием легко растворимых в воде NO2 и SО3. Полученные оксиды азота и серы, в свою очередь, взаимодействуют с частицами воды, образующейся в порах гранул 16 в результате капиллярной конденсации паров воды, находящихся в выхлопных газах, с образованием соответствующих кислот HNO3 и H2SO4. Кроме того, на поверхности и в порах гранул 16 оседают мелкодисперсные частицы (сажа и пр.), после чего очищенные выхлопные газы через отверстия перфорированной наружной оболочки 13 выбрасываются наружу, где смешиваются с нагретым воздухом, поступающим из КСТО 7. Одновременно приточный воздух, подаваемый вентилятором, движущийся в кольцевой тепловой камере 10, нагревается до требуемой температуры за счет теплопередачи через стенку КСТО 7 горячими газообразными продуктами сгорания и выбрасывается в отапливаемое помещение.

Параллельно вышеописанным процессам охлаждения продуктов сгорания и нагрева приточного воздуха, скорость которых за счет наличия гофр на поверхности КСТО 7 больше в несколько раз по сравнению с цилиндрической, газообразные продукты сгорания нагревают горизонтальные прямоугольные гнезда 17 корпуса КСТО 7, выполненного из коррозионно-стойкого материала с высокой теплопроводностью, и соответственно, спаи термоэмиссионных преобразователей (ТЭП) 21 ТЭЗ 18, противоположные концы которых охлаждаются приточным воздухом, движущимся в кольцевой камере нагрева 10. В результате нагрева спаянных концов проволочных отрезков 22 и 23 ТЭП 21 в рядах 19 ТЭЗ 18, расположенных в гнездах 17, горячими продуктами сгорания и охлаждении других спаянных концов ТЭП 21, расположенных в кольцевой камере нагрева 10, приточным воздухом, в рядах 19 ТЭЗ 18 каждой ТЭС 26 образуется термоэлектричество, которое суммируется в ТЭБ 28 и через токовыводы 29 и 30, преобразователь и аккумулятор (на фиг. 1–8 не показаны) подается в электродвигатель 4. При этом проволочные отрезки 22 и 23 ТЭП 21 рядов 19 изолированы от непосредственного контакта с продуктами сгорания и воздухом слоем диэлектрического коррозионно-стойкого материала прямоугольных вставок 18, что предохраняет металлы М1 и М2 пар 22 и 23 ТЭП 21 от коррозии и появления между ними короткого замыкания. Выполнение вставок 18 прямоугольной формы, утопленных в прямоугольные гнезда 17, обеспечивает их прочную стыковку с поверхностью гнезд 17. Кроме того, включение в конструкции ТЭС 26 и ТЭБ 28 АТП последовательно соединенных между собой через конденсаторы 25 и 27, значительно снижает электрическое сопротивление ТЭБ 28 и, соответственно, увеличивает силу тока на токовыводах 29 и 30.

Регулирование процесса очистки выхлопных газов и режима работы АТП осуществляется изменением живого сечения щелей 9 путем поворота насадка 11 и изменением расхода топлива, подаваемого в горелку 5. Если очистка выхлопных газов не требуется, то АТП можно использовать без насадка 11.

По окончании работы АТП производится регенерация адсорбента – гранулированного доменного шлака 16, для осуществления которой с КСТО 7 снимается насадок 11, после чего адсорбент промывается водой.

Величина разности электрического потенциала на токовыводах 29 и 30 АТП зависит от характеристик пар металлов М1 и М2, из которых изготовлены проволочные отрезки 22 и 23 ТЭП 21, от числа их в ТЭЗ 8, числа ТЭС 26 в ТЭБ 28 и количества ТЭБ 28. Полученный электрический ток обеспечивает работу электродвигателя 4 вентилятора 3 и автономность работы АТП.

Таким образом, предлагаемая автономная тепловая пушка обеспечивает нагрев воздуха для децентрализованного отопления помещений, очистку выхлопных газов и генерацию электрической энергии за счет эффекта термоэлектричества, что позволяет использовать ее в автономном режиме и повышает экономическую и экологическую эффективность.

Автономная тепловая пушка, включающая цилиндрический корпус, горелку, камеру сгорания газа, теплообменный аппарат в форме трубы, насадок для очистки продуктов сгорания, вентилятор-нагнетатель с электродвигателем, отличающаяся тем, что внутри цилиндрического корпуса по ходу движения воздуха коаксиально установлены вентилятор с электродвигателем, горелка с инжектором, соединенная с подводящим газопроводом, цилиндрическая камера сгорания совмещена с теплообменником, внутренний торец ее герметически соединен с инжектором, наружный торец выступает на расстояние L от торца корпуса, образуя участок, перфорированный продольными щелями, а между наружной поверхностью цилиндрической камеры сгорания и стенкой цилиндрического корпуса расположена кольцевая тепловая камера, насадок для очистки продуктов сгорания состоит из наружной и внутренней перфорированных оболочек с полостью между ними, внутренняя оболочка насадка выступает своим торцом на расстояние L от наружной оболочки, образуя участок, перфорированный также продольными щелями, который надет на аналогичный участок цилиндрической камеры сгорания, причем вышеупомянутая полость заполнена гранулами металлургической пемзы, изготовленной из металлургических шлаков с модулем основности М>1 диаметром от 5 до 10 мм, поверхность цилиндрической камеры сгорания кроме перфорированного участка выполнена с горизонтальными прямоугольными гофрами, образующими горизонтальные прямоугольные гнезда, в которые частично утоплены термоэлектрические звенья, состоящие из прямоугольных вставок, выполненных из термостойкого диэлектрического материала (например, керамики), внутри которых помещены ряды, состоящие из расположенных параллельно термоэмиссионных преобразователей, каждый из которых представляет собой пару параллельных проволочных отрезков, выполненных из разных металлов М1 и М2, спаянных на концах между собой с образованием некоторого зазора шириной Δ, причем термоэлектрические звенья установлены в гнездах таким образом, чтобы большая часть каждого термоэмиссионного преобразователя в рядах омывалась приточным воздухом, подаваемым вентилятором, каждое термоэлектрическое звено у инжектора попарно соединены между собой перемычкой, а перед перфорированным участком соединены электрическим конденсатором, образуя термоэлектрические секции, которые, в свою очередь, последовательно соединены между собой тоже через электрические конденсаторы, образуя термоэлектрический блок в форме разомкнутого кольца, а первый и последний из вышеупомянутых конденсаторов термоэлектрического блока соединены с токовыводами, которые, в свою очередь, соединены через преобразователь и аккумулятор с электродвигателем вентилятора.
Автономная тепловая пушка
Автономная тепловая пушка
Автономная тепловая пушка
Источник поступления информации: Роспатент

Показаны записи 201-210 из 450.
26.08.2017
№217.015.d5b5

Газораспределительная станция

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Газораспределительная станция содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, эжектор, вихревую...
Тип: Изобретение
Номер охранного документа: 0002623015
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d7a9

Походная гелиотермоэлектростанция

Изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и тепловой энергии природных источников. Походная гелиотермоэлектростанция включает ковер, собранный из прямоугольных секций, каждая из которых представляет...
Тип: Изобретение
Номер охранного документа: 0002622495
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.de44

Насадочный абсорбер осушки газа

Изобретение относится к осушке и/или очистке газов в химической, металлургической или других областях народного хозяйства. Насадочный абсорбер осушки газа содержит корпус с патрубками подвода газа, отвода осушенного газа, подвода и отвода абсорбента и расположенные в корпусе входную...
Тип: Изобретение
Номер охранного документа: 0002624701
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.e98a

Надувная башенная градирня

Изобретение относится к теплоэнергетике. Надувная башенная градирня содержит металлический каркас, водоуловитель, кольцевой водораспределитель, снабженный разбрызгивателями, ороситель, опорное кольцо, воздуховпускные окна, в которых установлены на вертикальных осях заслонки, причем оболочка...
Тип: Изобретение
Номер охранного документа: 0002627751
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.e99b

Устройство для очистки и утилизации дымовых газов крышной котельной

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов крышных котельных от вредных примесей и утилизации их тепла и конденсата водяных паров. Технический результат: повышение надежности и эффективности устройства. Устройство для очистки и утилизации...
Тип: Изобретение
Номер охранного документа: 0002627808
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.eace

Аппарат для обработки газа

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Аппарат для обработки газа содержит корпус со штуцерами входа и выхода...
Тип: Изобретение
Номер охранного документа: 0002627887
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eaf1

Классификатор для разделения очищенных дымовых газов на азот и углекислый газ

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей, например, для полной утилизации дымовых газов теплогенераторов, работающих на бессернистом топливе (природном газе). Классификатор для разделения очищенных дымовых газов на...
Тип: Изобретение
Номер охранного документа: 0002627892
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eb09

Аппарат для обработки газа

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Аппарат для обработки газа содержит корпус со штуцерами входа и выхода...
Тип: Изобретение
Номер охранного документа: 0002627898
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ebd5

Сорбент для очистки водных сред от ионов мышьяка и способ его получения

Изобретение относится к области сорбционной очистки вод. Предложен сорбент для очистки водных сред от мышьяка. Сорбент содержит 98-99 вес.% наночастиц железа и крахмал. Для получения сорбента сернокислое железо и крахмал растворяют в воде с образованием комплекса ионов железа с крахмалом, через...
Тип: Изобретение
Номер охранного документа: 0002628396
Дата охранного документа: 16.08.2017
26.08.2017
№217.015.ebf0

Биогазовая установка для переработки навоза

Изобретение относится к сельскому хозяйству, в частности к устройствам для переработки навоза. Биогазовая установка содержит биореактор с последовательно сообщающимися емкостями с переливными перегородками, снабженный трубопроводами для подачи навозного субстрата и отвода сброженной массы,...
Тип: Изобретение
Номер охранного документа: 0002628425
Дата охранного документа: 16.08.2017
Показаны записи 201-210 из 285.
09.06.2018
№218.016.5f96

Узел комплексной очистки природного газа

Изобретение относится к технике распределения газов и может быть использовано для очистки природных газов от вредных примесей: капель конденсата, кристаллогидратов углеводородов и механических частиц в газораспределительных станциях (ГРС) и газораспределительных пунктах (ГРП). Технический...
Тип: Изобретение
Номер охранного документа: 0002656771
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f9b

Автономный воздухонагреватель

Изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления для нагревания воздуха в бытовых и производственных помещениях. Автономный воздухонагреватель включает цилиндрический корпус, внутри которого установлены вентилятор с электродвигателем,...
Тип: Изобретение
Номер охранного документа: 0002656773
Дата охранного документа: 06.06.2018
01.07.2018
№218.016.69b4

Термоэлектрическая инжекционная горелка

Предлагаемое изобретение относится к энергетике и может быть использовано в инжекционных горелках бытовых отопительных приборов (газовых плитах и т.п.) для совместной генерации тепла и электрической энергии. Термоэлектрическая инжекционная горелка включает опорное кольцо, выполненное из...
Тип: Изобретение
Номер охранного документа: 0002659309
Дата охранного документа: 29.06.2018
04.07.2018
№218.016.6a8d

Термоэлектрическое оребрение для трубопровода

Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах различных теплоносителей. Термоэлектрическое оребрение содержит участок трубопровода, на котором расположены по всей его длине продольные ребра,...
Тип: Изобретение
Номер охранного документа: 0002659508
Дата охранного документа: 02.07.2018
28.08.2018
№218.016.7fcc

Вытяжное устройство для оголовка купола

Изобретение относится к области вентиляции и может быть использовано для естественной и искусственной вентиляции различных зданий, например культовых сооружений. Вытяжное устройство для оголовка купола содержит оголовок, помещенный вверху купола, состоящий из вертикального ограждения с...
Тип: Изобретение
Номер охранного документа: 0002664950
Дата охранного документа: 23.08.2018
03.10.2018
№218.016.8d2f

Система лучистого отопления здания

Изобретение относится к отопительным системам здания. Система лучистого отопления здания с несущими стенами и внутренними перегородками включает камеру подогрева воздуха, сборные каналы, горизонтальные подающие каналы, горизонтальные распределительные каналы, вертикальные воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002668239
Дата охранного документа: 27.09.2018
11.10.2018
№218.016.9000

Ингибитор коррозии нефтяных труб и способ его получения

Изобретение относится к защите нефтяных труб от кислотной коррозии и может применяться при добыче нефти или природного газа. Ингибитор коррозии получен экстракцией никотина и сопутствующих веществ из отходов табака водным раствором бензойной кислоты и состоит из соли никотина и бензойной...
Тип: Изобретение
Номер охранного документа: 0002669137
Дата охранного документа: 08.10.2018
13.10.2018
№218.016.9113

Безвентиляторная градирня

Изобретение относится к теплоэнергетике и может быть использовано при воздушном охлаждении оборотной воды в градирнях ТЭЦ, АЭС и промышленных предприятий. Везвентиляторная градирня содержит вертикальную башню с водопароулавливателем, воздухозаборными окнами, резервуар для сбора охлажденной...
Тип: Изобретение
Номер охранного документа: 0002669430
Дата охранного документа: 11.10.2018
26.10.2018
№218.016.9630

Кольцевой капиллярный конденсатор

Изобретение относится к энергомашиностроению, а именно к теплообменной аппаратуре, и может быть использовано для конденсации отработанного пара без использования хладоагента. Технический результат - повышение надежности и эффективности работы кольцевого капиллярного конденсатора. Кольцевой...
Тип: Изобретение
Номер охранного документа: 0002670728
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.9843

Секционный капиллярный конденсатор

Изобретение относится к энергомашиностроению, а именно к теплообменной аппаратуре, и может быть использовано для конденсации отработанного пара без использования хладоагента. Технический результат - повышение надежности и эффективности работы секционного капиллярного конденсатора. Секционный...
Тип: Изобретение
Номер охранного документа: 0002671288
Дата охранного документа: 30.10.2018
+ добавить свой РИД