×
25.08.2017
217.015.aa50

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КВАНТОВЫХ ТОЧЕК, ФУНКЦИОНАЛИЗИРОВАННЫХ ДЕНДРИМЕРАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологиям. Сначала получают раствор квантовых точек на основе селенида кадмия в хлороформе с их концентрацией 4⋅10 М и смешивают его с раствором дендримера в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100. В качестве дендримера используют полиамидоаминный дендример с поверхностными аминогруппами, например полиамидоамин 4-го или 5-го поколения. Квантовые точки на основе CdSe могут быть покрыты оболочкой из других полупроводников, внешний слой которой представляет собой ZnS. Полученную смесь дважды промывают этилацетатом при центрифугировании, надосадочную жидкость отбирают, а осадок растворяют в растворителе. Полученные квантовые точки, функционализированные дендримерами, характеризуются высокой стабильностью в водных средах, квантовым выходом выше 40% и пригодны для дальнейшего связывания с биомолекулами. Способ прост и экономичен. 3 з.п. ф-лы, 10 пр.

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных в водных средах полупроводниковых квантовых точек (КТ) с применением дендримеров в качестве стабилизаторов. Такая КТ имеет в качестве поверхностных лигандов молекулы дендримера с поверхностными аминогруппами, обеспечивающими коллоидную стабильность в водной среде.

В качестве подходящего дендримера может применяться дендример с поверхностными функциональными группами, аналогичными функциональным группам исходных лигандов, связанным с поверхностью КТ. Под исходными лигандами подразумеваются лиганды, стабилизирующие КТ в органических растворителях, в том числе применяемых в ходе синтеза КТ.

Наиболее близким к заявленному техническому решению является способ получения квантовых точек на основе золота, функционализированных с помощью дендримеров (Method for making a ligand-quantum dot conjugate, USA Patent № US8216549B2).

Указанный способ включает получение раствора, содержащего КТ на основе золота в дистиллированной воде с концентрацией 0,2 масс. %, смешивание полученного раствора с раствором полиамидоаминного дендримера с поверхностными гидроксильными группами в метаноле с концентрацией 10 масс. %.

Задачей изобретения является разработка способа получения стабильных в водных средах КТ с высоким квантовым выходом флуоресценции на основе КТ, синтезированных в органических растворителях, путём реакции лигандного обмена с применением дендримеров.

Технический результат заявляемого изобретения заключается в более высоком квантовом выходе КТ (выше 40%) в водной среде за счёт применения КТ на основе селенида кадмия, синтезированных в органических растворителях при высокой температуре. Заявляемый способ отличается простотой процесса, пригодностью полученных частиц для дальнейшего связывания с биомолекулами за счёт большого числа функциональных групп, высоким квантовым выходом полученных КТ и их коллоидной стабильностью в водных средах. Кроме того, заявляемый способ позволяет избежать расходования больших объёмов органических растворителей и применения способов обработки, отличающихся большой длительностью и требующих специального оборудования, таких как, например, ультразвуковая обработка и выпаривание на роторном испарителе.

Указанный технический результат достигается тем, что квантовые точки (КТ) на основе селенида кадмия, полученные в органической среде, добавляют в хлороформ с получением концентрации КТ 4⋅10-8М, смешивают полученный раствор с раствором полиамидоаминного дендримера с поверхностными аминогруппами в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100.

Полученные квантовые точки, функционализированные дендримерами, могут быть подвергнуты переосаждению, включая осаждение путём добавления этилацетата, дальнейшей очистке и последующему растворению или диспергированию в подходящем растворителе, включая воду и буферные растворы, с целью определения оптических, гидродинамических и иных характеристик полученных частиц в указанных растворах.

Возможно использование полиамидоамина 4-го поколения, при этом мольное соотношение квантовых точек к дендримеру составляет от 1:900 до 1:1100, предпочтительно 1:1000, либо полиамидоамина 5-го поколения, при этом мольное соотношение квантовых точек к дендримеру составляет от 1:700 до 1:900, предпочтительно 1:800.

В качестве квантовых точек можно использовать квантовые точки на основе CdSe с оболочкой из других полупроводников, внешний слой которой представляет собой ZnS.

Пример 1. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:1000. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 22%. Квантовый выход КТ после перевода в водную среду составлял 41% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 2. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:900. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 22%. Квантовый выход КТ после перевода в водную среду составлял 40% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 3. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:1100. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 22%. Квантовый выход КТ после перевода в водную среду составлял 40% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 4. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:800. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок растворялся не полностью, после добавления избытка воды или буферного раствора наблюдались оседающие КТ, что свидетельствует о недостаточном для стабилизации КТ количестве дендримера.

Пример 5. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 4-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:1200. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием мутного раствора, что свидетельствует об образовании крупных рассеивающих свет агрегатов вследствие избытка дендримера.

Пример 6. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:800. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 21%. Квантовый выход КТ после перевода в водную среду составлял 41% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 7. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:700. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 21%. Квантовый выход КТ после перевода в водную среду составлял 41% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 8. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:900. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием прозрачного раствора без видимых частиц, что свидетельствует об отсутствии крупных агрегатов вследствие избытка дендримера и о его достаточном количестве для гидрофилизации КТ. Полученные частицы имели поверхностный заряд, равный примерно -50 мВ, что свидетельствует о высокой коллоидной стабильности частиц.

Снижение квантового выхода КТ после перевода в водную среду составляло 21%. Квантовый выход КТ после перевода в водную среду составлял 41% (согласно измерениям на приборе для измерения абсолютного квантового выхода Quantaurus QY фирмы Hamamatsu).

Пример 9. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:600. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок растворялся не полностью, после добавления избытка воды или буферного раствора наблюдались оседающие КТ, что свидетельствует о недостаточном для стабилизации КТ количестве дендримера.

Пример 10. КТ структуры CdSe/CdS/ZnS получали по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics 53. 2014. 225–231). Полученные таким образом КТ растворяли в 1 мл хлороформа с обеспечением концентрации КТ 4⋅10-8 М. Затем в реакционный сосуд с магнитной мешалкой добавляли полученный раствор КТ в хлороформе и 1 мл раствора полиамидоамина 5-го поколения в метаноле при мольном соотношении КТ:полиамидоамин 1:1000. Реакцию проводили в течение 4 часов при перемешивании при температуре 45 °C. Полученную смесь дважды промывали этилацетатом (4 мл) при центрифугировании при 5000 об/мин в течение 10 мин. Надосадочную жидкость отбирали и осадок растворяли в воде или требуемом буферном растворе.

Осадок полностью растворялся с образованием мутного раствора, что свидетельствует об образовании крупных рассеивающих свет агрегатов вследствие избытка дендримера.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 96.
21.12.2019
№219.017.f00a

Способ неразрушающего контроля распределения намагниченности по толщине ферритовой плёнки

Изобретение относится к микро- и нанотехнологии. Способ неразрушающего контроля намагниченности эпитаксиальной ферритовой пленки на немагнитной подложке включает одновременное воздействие на пленку постоянного магнитного поля и СВЧ магнитного поля, измерение СВЧ сигналов на выходе пленки и...
Тип: Изобретение
Номер охранного документа: 0002709440
Дата охранного документа: 17.12.2019
27.01.2020
№220.017.facf

Добавка для культивирования эпителиальных клеток

Изобретение относится к добавке для ускорения пролиферации клеточных культур на основе хитозана, отличающейся тем, что она представляет собой хитозан в солевой форме, полученной при взаимодействии хитозана с органической кислотой, выбранной из аскорбиновой, или аспарагиновой, или...
Тип: Изобретение
Номер охранного документа: 0002711920
Дата охранного документа: 24.01.2020
05.02.2020
№220.017.fdd2

Способ получения наночастиц аспарагината хитозана

Изобретение относится к области химии полимеров и может быть использовано для получения полимерных наночастиц из аспарагината хитозана. Способ получения производных хитозана предусматривает смешивание хитозана с кислотой и получение целевого продукта. При этом используют порошок...
Тип: Изобретение
Номер охранного документа: 0002713138
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.ff3f

Способ диагностики состояния сосудов по форме пульсовой волны

Изобретение относится к медицине и может быть использовано для измерения и анализа состояния артериальной сосудистой системы по форме пульсовой волны, регистрируемой осциллометрическим методом, и проведения скрининговой диагностики состояния артериальной сосудистой системы человека. Проводят...
Тип: Изобретение
Номер охранного документа: 0002713157
Дата охранного документа: 04.02.2020
23.02.2020
№220.018.04b6

Средство, обладающее цитотоксической активностью

Изобретение относится к области органической химии и фармации. Предложено применение 2-(4-карбоксибензилиден)-3,4-дигидронафтален-1(2Н)-она в качестве средства, обладающего цитотоксической активностью. Технический результат: соединение подавляло метаболическую активность клеточных линий почки...
Тип: Изобретение
Номер охранного документа: 0002714932
Дата охранного документа: 21.02.2020
07.03.2020
№220.018.0a75

Способ количественного определения новокаина

Изобретение относится к аналитической химии, в частности к количественному определению новокаина. Предложен способ количественного определения новокаина, включающий обработку анализируемой пробы растворами органического реагента и додецилсульфата натрия, добавление цитратного буферного...
Тип: Изобретение
Номер охранного документа: 0002715997
Дата охранного документа: 05.03.2020
15.03.2020
№220.018.0c62

Способ определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрической структуры

Изобретение относится к области контрольно-измерительной техники и предназначено для одновременного определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур в сверхвысокочастотном диапазоне, и может найти применение для...
Тип: Изобретение
Номер охранного документа: 0002716600
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e36

Направленный 3d ответвитель на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности. Техническая проблема изобретения заключается в создании 3D ответвителя СВЧ-мощности, обеспечивающего возможность...
Тип: Изобретение
Номер охранного документа: 0002717257
Дата охранного документа: 19.03.2020
15.04.2020
№220.018.14bf

Устройство для контролируемого получения пористых оксидов полупроводников in situ

Изобретение относится к области получения пористых анодных оксидов полупроводников и изучения полупроводниковых материалов в процессе их формирования (т.е. in situ). Техническая проблема заключается в возможности получения полупроводниковых наноструктурированных материалов с прогнозируемым...
Тип: Изобретение
Номер охранного документа: 0002718773
Дата охранного документа: 14.04.2020
06.07.2020
№220.018.3019

Способ синтеза апконверсионных частиц nayf:er,yb

Изобретение может быть использовано в биофизике, медицинской диагностике и терапии для преобразования инфракрасного излучения в видимое. Готовят водные растворы гексагидратов хлорида иттрия, хлорида иттербия, хлорида эрбия, а также цитрата натрия и фторида натрия. Полученные растворы...
Тип: Изобретение
Номер охранного документа: 0002725581
Дата охранного документа: 02.07.2020
Показаны записи 31-39 из 39.
20.01.2018
№218.016.0eee

Биосенсор для неинвазивного оптического мониторинга патологии биологических тканей

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного оптического мониторинга патологии биологических тканей, связанных с развитием сахарного диабета. Биосенсор содержит: источник и приемник излучения; аппликатор, изготовленный в виде сосуда с...
Тип: Изобретение
Номер охранного документа: 0002633494
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1022

Способ оценки скорости осадконакопления

Изобретение относится к области геологии и может быть использовано для оценки скорости осадконакопления карбонатных отложений. Сущность: измеряют магнитную восприимчивость карбонатных пород на разных стратиграфических уровнях или участках разреза. Строят графики или карты значений, обратных...
Тип: Изобретение
Номер охранного документа: 0002633659
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1035

Устройство для дозированного вскрытия микрокапсул

Использование: для хранения микрокапсул с ЛВ и их дозированного вскрытия. Сущность изобретения заключается в том, что устройство для дозированного вскрытия микрокапсул содержит подложку и, по крайней мере, одну лунку для микрокапсулы, по крайней мере, один первый электропроводный слой,...
Тип: Изобретение
Номер охранного документа: 0002633655
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.10f7

Способ трансдермальной доставки биологически активных веществ

Изобретение относится к медицине и может быть использовано для трансдермальной доставки биологически активных веществ (БАВ). Для этого осуществляют аппликацию контейнеров с иммобилизованным БАВ на поверхность кожи с последующей транспортировкой через придатки кожи. В качестве контейнеров...
Тип: Изобретение
Номер охранного документа: 0002633928
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
04.04.2018
№218.016.307e

Способ изготовления биосенсорной структуры

Изобретение относится к технологии изготовления сенсорных структур на основе твердотельного полупроводника и функционального органического покрытия и может быть использовано при создании ферментных биосенсоров на основе полевых транзисторов или структур «электролит-диэлектрик-полупроводник»....
Тип: Изобретение
Номер охранного документа: 0002644979
Дата охранного документа: 15.02.2018
13.02.2019
№219.016.b951

Способ закрытия капилляров фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на...
Тип: Изобретение
Номер охранного документа: 0002679460
Дата охранного документа: 11.02.2019
01.09.2019
№219.017.c529

Устройство для определения абсолютного квантового выхода люминесценции

Использование: для определения абсолютного квантового выхода люминесценции. Сущность изобретения заключается в том, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества содержит расположенные на одной оптической оси источник света, фотометрический...
Тип: Изобретение
Номер охранного документа: 0002698548
Дата охранного документа: 28.08.2019
02.06.2023
№223.018.7593

Способ получения молекулярно-импринтированного полимера

Изобретение относится к области аналитической химии и молекулярной биологии и может быть использовано для получения полимера, содержащего отпечатки (импринтинг) молекул, с последующим его применением для анализа и разделения молекулярного материала. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002753850
Дата охранного документа: 24.08.2021
+ добавить свой РИД