×
25.08.2017
217.015.a916

Результат интеллектуальной деятельности: Способ определения примесей в каменном и буром угле и торфе

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе. Для этого применяют вскрытие пробы смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в течение 1-1,5 ч. Полученную смесь, содержащую раствор примесных элементов и нерастворимую основу, охлаждают и обрабатывают смесью концентрированных хлорной и фтороводородной кислот (3:5) при соотношении исходной навески пробы к смеси кислот 1:(110-130) при нагревании до появления паров хлорной кислоты. Затем смесь обрабатывают азотной кислотой, разбавленной деионизированной водой 1:1, при соотношении исходной навески 1:(100-120). Полученную смесь, содержащую раствор примесных элементов и нерастворимую основу анализируемой пробы, разбавляют деионизированной водой, раствор примесей отделяют от нерастворимой основы фильтрованием и определяют в нем содержание примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой. 1 табл., 1 пр.

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе.

Известен способ атомно-абсорбционного определения примесей железа, калия, кальция, магния и натрия в топливе твердом минеральном, основанный на экстрагировании определяемых элементов раствором хлороводородной кислоты при нагревании и атомно-абсорбционном анализе полученного экстракта [ГОСТ Р 32983-2014 (ИСО 1952:2008) Топливо твердое минеральное. Определение металлов, экстрагируемых разбавленной соляной кислотой]. Недостатком метода является неполное извлечение примесных элементов из анализируемой пробы, а также невозможность определения ряда примесей, в частности алюминия, бария, ванадия, иттрия, лантана, марганца, меди, скандия, стронция, титана, фосфора, хрома и циркония.

Известен способ определения минеральных компонентов твердого топлива, основанный на последовательной деминерализации угольных фракций реактивами, растворяющими определенную группу минеральных веществ, и химическом анализе получаемых продуктов. Метод включает обработку анализируемой пробы 10%-ным раствором хлорида натрия при температуре кипения в течение 1 часа, фильтрацию содержимого и определение в фильтрате кальция и магния; обработку остаточного угля концентрированной хлороводородной кислотой, фильтрацию содержимого и определение в фильтрате кальция, магния, железа и алюминия; озоление остаточного угля и химический анализ золы на содержание кальция, магния, железа и алюминия [Менковский М.А. О значении и определении фазового состава минеральных компонентов твердых горючих ископаемых // Химия твердого топлива. - 1973. - №1. - С. 14-17] - прототип. Однако при реализации этого способа не достигается одновременное извлечение алюминия, железа, кальция и магния из анализируемой пробы и данный способ не распространяется на такие элементы, как барий, ванадий, иттрий, калий, лантан, марганец, медь, натрий, скандий, стронций, титан, фосфор, хром и цирконий. Кроме того, способ является трудоемким и длительным, так как состоит из многократной обработки твердого топлива различными реактивами, химического анализа нескольких фильтратов и сложного химического анализа золы, включающего ее сплавление с плавнями при высоких температурах или растворение в смеси кислот и анализ полученного раствора примесей различными методами.

Техническим результатом изобретения является одновременное извлечение алюминия, железа, кальция и магния из анализируемой пробы в один раствор, расширение круга извлекаемых примесей, включая барий, ванадий, иттрий, калий, лантан, марганец, медь, натрий, скандий, стронций, титан, фосфор, хром, цирконий, и одновременное определение всех элементов в растворе примесей атомно-эмиссионным методом с индуктивно-связанной плазмой.

Это достигается тем, что анализируемую навеску твердого топлива (каменного или бурого угля или торфа) обрабатывают смесью минеральных кислот при нагревании, отделяют основу, получают водный раствор примесей и определяют примеси атомно-эмиссионным методом с индуктивно-связанной плазмой. Согласно изобретению обработку пробы проводят смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в течение 1-1,5 часа; затем содержимое сосуда охлаждают и обрабатывают смесью концентрированных хлорной и фтороводородной кислот (3:5) при соотношении исходной навески пробы к смеси кислот 1:(110-130) и нагревании до появления паров хлорной кислоты; далее охлаждают и обрабатывают азотной кислотой, разбавленной деионизированной водой 1:1, при соотношении исходной навески пробы к кислоте 1:(100-120), в результате чего получают смесь, содержащую раствор примесных элементов и нерастворимую основу анализируемой пробы; полученную смесь разбавляют деионизированной водой до соотношения исходной навески пробы к воде 1:(800-1000); раствор примесей отделяют фильтрованием от нерастворимой основы и определяют в нем содержание примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой.

Сущность способа заключается в следующем. При обработке пробы твердого топлива смесью концентрированных хлороводородной и азотной кислот при нагревании происходит разрушение компонентов, входящих в состав органических соединений топлива, а именно гуматов натрия, калия, кальция, магния, железа и ряда микроэлементов - бария, ванадия, иттрия, лантана, марганца, меди, скандия, стронция, титана, фосфора, хрома и циркония, а также оксидов, гидроксидов и карбонатов этих элементов. При последующей обработке пробы смесью концентрированных хлорной и фтороводородной кислот происходит разрушение внешних минеральных соединений, представленных кварцем, сульфидами, глинистыми минералами и другими гидратированными силикатами, содержащими такие макрокомпоненты, как алюминий, железо, кальций и магний. При нагревании содержимого сосуда до паров хлорной кислоты отгоняется избыток фтороводородной кислоты и образуется влажный осадок фторидов и перхлоратов определяемых элементов. При последующей обработке полученной смеси азотной кислотой происходит растворение фторидов и перхлоратов и в раствор переходит 95-100% макро- и микрокомпонентов. Разбавление смеси деионизированной водой уменьшает вязкость раствора и позволяет отделить его от нерастворимой основы фильтрованием для последующего определения в нем примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой.

Соблюдение указанных режимов обработки пробы, концентраций используемых реагентов и соотношений твердой и жидкой фаз позволяет достигнуть наилучших результатов. Например, при обработке твердого топлива смесью концентрированных хлороводородной и азотной кислот при соотношении навески пробы к смеси кислот 1:(99 и менее) не достигается полное извлечение определяемых компонентов из их гуматов, оксидов, гидроксидов и карбонатов в раствор. При соотношении пробы к смеси кислот 1:(121 и более) наблюдается перерасход кислот, что приводит к повышению значения поправки контрольного опыта и, следовательно, к ухудшению метрологических характеристик способа.

При обработке смесью концентрированных хлорной и фтороводородной кислот при соотношении исходной навески пробы к смеси кислот 1:(109 и менее) не достигается полное разрушение внешних минеральных соединений. А при соотношении пробы к смеси кислот 1:(131 и более) также наблюдается перерасход кислот, приводящий к повышению значения поправки контрольного опыта и к ухудшению метрологических характеристик способа.

При обработке смеси, содержащей влажные соли фторидов и перхлоратов определяемых элементов, разбавленной азотной кислотой при соотношении исходной навески пробы к кислоте 1:(99 и менее), ухудшаются условия растворения фторидов и перхлоратов, а при соотношении исходной навески пробы к кислоте 1:(121 и более) увеличивается кислотность раствора примесей, что нежелательно при последующем проведении атомно-эмиссионного анализа.

При разбавлении полученной смеси до соотношения исходной навески пробы к воде 1:(799 и менее) усложняется процесс отделения раствора определяемых элементов от нерастворимой основы твердого топлива фильтрованием, а разбавление смеси до соотношения 1:(1001 и более) делает невозможным определение низких содержаний микрокомпонентов и, следовательно, ухудшает метрологические характеристики способа.

Из вышеуказанного следует, что несоблюдение заявленных параметров снижает технический результат заявленного изобретения.

Пример

Навеску анализируемой пробы (каменного, бурого угля, торфа) массой 0,1 г помещают в тигель из стеклоуглерода, приливают 10 см3 смеси концентрированных хлороводородной и азотной кислот (3:1) (соотношение 1:120) и нагревают на плитке в течение 1-1,5 часа, поддерживая слабое кипение. Содержимое тигля охлаждают, приливают к нему смесь кислот, содержащую 3 см3 концентрированной хлорной кислоты и 5 см3 концентрированной фтороводородной кислоты (соотношение 1:130), нагревают на плитке до появления тяжелых паров хлорной кислоты, снова охлаждают и приливают 10 см3 азотной кислоты, разбавленной деионизированной водой 1:1 (соотношение 1:120). Далее переносят содержимое тигля в полипропиленовую колбу вместимостью 100 см3, доводят его объем до метки деионизированной водой (соотношение 1:1000), тщательно перемешивают и фильтруют через бумажный фильтр «белая лента», собирая фильтрат в сухую полипропиленовую колбу. В полученном фильтрате определяют содержание примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой. В качестве градуировочных используют растворы, содержащие сумму определяемых элементов, приготовленные последовательным разбавлением стандартных образцов состава растворов (ГСО).

Эффективность способа оценивали по степени извлечения примесей из твердого топлива в анализируемый раствор. Содержание примесных элементов в растворе определяли на спектрометре iCAP 6300 фирмы "Thermo Electron Corporaition" (США). Правильность полученных результатов контролировали методами варьирования навесок и добавок.

Опыты показали, что способ позволяет количественно (на 95-100%) переводить макро- и микроэлементы из твердого топлива в раствор и полностью отделять раствор определяемых примесей от нерастворимой основы твердого топлива, что позволяет проводить атомно-эмиссионный анализ полученного концентрата без помех со стороны основного компонента твердого топлива.

Таким образом, при реализации предлагаемого способа достигается количественное извлечение алюминия, бария, ванадия, железа, иттрия, калия, кальция, лантана, магния, марганца, меди, натрия, скандия, стронция, титана, фосфора, хрома и циркония из твердого топлива, что обеспечивает существенное расширение круга определяемых элементов по сравнению с известным способом. Кроме того, метод последовательной деминерализации угольных фракций различными реактивами не позволяет одновременно сконцентрировать примесные элементы в одном растворе и, как следствие, является очень трудоемким и длительным. Заявленный способ позволяет одновременно извлекать алюминий, барий, ванадий, железо, иттрий, калий, кальций, лантан, магний, марганец, медь, натрий, скандий, стронций, титан, фосфор, хром, цирконий из анализируемой пробы в один раствор и проводить одновременное определение всех элементов в концентрате примесей атомно-эмиссионным методом с индуктивно-связанной плазмой, так как в этих условиях достигается полное отделение основного компонента твердого топлива.

Результатом применения предлагаемого способа является повышение комплексного селективного извлечения попутных компонентов различных видов твердого топлива в товарные продукты, снижение в 5-8 раз потерь черных и цветных металлов (ванадия, железа, марганца, меди, хрома и др.) с отходами сжигания твердого топлива за счет предварительного определения их точного содержания и возможность контроля за содержанием экотоксикантов (фосфора, хрома и др.), что особенно актуально из-за ужесточения требований при осуществлении транснациональных перевозок.

В таблице приведены результаты осуществления способа при различных значениях заявленных параметров.

Способ определения примесей в каменном и буром угле и торфе, включающий вскрытие пробы смесями минеральных кислот при нагревании, отделение основы, получение водного раствора примесей, определение примесей в полученном растворе, отличающийся тем, что вскрытие осуществляют смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в течение 1-1,5 ч, содержимое сосуда обрабатывают смесью концентрированных хлорной и фтороводородной кислот (3:5) при соотношении исходной навески пробы к смеси кислот 1:(110-130) при нагревании до появления паров хлорной кислоты, далее обрабатывают азотной кислотой, разбавленной 1:1, при соотношении исходной навески пробы к кислоте 1:(100-120), в результате чего получают смесь, содержащую раствор примесных элементов и нерастворимую основу анализируемой пробы, полученную смесь разбавляют деионизированной водой до соотношения исходной навески пробы к воде 1:(800-1000), раствор примесей отделяют от нерастворимой основы фильтрованием и определяют в нем содержание примесных элементов атомно-эмиссионным методом с индуктивно-связанной плазмой.
Источник поступления информации: Роспатент

Показаны записи 311-320 из 330.
01.07.2020
№220.018.2d2a

Полимерный вкладыш ацетабулярного компонента эндопротеза с биоактивным пористым слоем для остеосинтеза

Изобретение относится к области медицины, а именно травматологии, и раскрывает полимерный вкладыш ацетабулярного компонента эндопротеза тазобедренного сустава. Полимерный вкладыш характеризуется тем, что выполнен из сверхвысокомолекулярного полиэтилена методом термического прессования, имеющий...
Тип: Изобретение
Номер охранного документа: 0002725063
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d34

Способ ультразвукового исследования твёрдых материалов и устройство для его осуществления

Использование: для неразрушающего контроля твердых материалов. Сущность изобретения заключается в том, что для осуществления предлагаемых способа и устройства оптико-акустическому преобразователю и решетке пьезоэлементов придают тороидальную форму, которая сфокусирована таким образом, что ее...
Тип: Изобретение
Номер охранного документа: 0002725107
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d42

Способ определения теплопроводности алмазных материалов

Изобретение относится к области теплофизических измерений и может быть использовано для определения тепловых характеристик алмазных материалов, таких как природные и синтетические монокристаллы, алмазные поликристаллические материалы в интервале температур от 25 до 300°С. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002725109
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d4c

Способ измерения концентрации кислорода в подкожной опухоли экспериментальных животных

Изобретение относится к медицине, а именно к биомедицине, и может быть использовано для измерения концентрации кислорода в подкожной опухоли экспериментальных животных. Проводят предварительную подготовку экспериментальных животных с подкожно привитой опухолью, для чего животных наркотизируют...
Тип: Изобретение
Номер охранного документа: 0002725065
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d4d

Устройство для изучения коррозионно-усталостного разрушения металлов и сплавов в ходе механических испытаний в жидком электролите

Изобретение относится к способу механических испытаний металлических материалов, а именно к созданию устройства, позволяющего циклически деформировать изгибом образцы металлических материалов, погруженных в электролит, с одновременным непрерывным измерением электродного потенциала образца....
Тип: Изобретение
Номер охранного документа: 0002725108
Дата охранного документа: 29.06.2020
09.07.2020
№220.018.30b0

Способ вакуумной карбидизации поверхности металлов

Изобретение относится к области электрофизических методов нанесения покрытий на переходные металлы IV-VI групп и сплавов на их основе с формированием покрытия толщиной до 200 мкм, содержащего карбиды, углерод в виде включений в объеме покрытия и углеродный слой на поверхности. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002725941
Дата охранного документа: 07.07.2020
11.07.2020
№220.018.3168

Способ измерения концентрации активных форм кислорода (афк) в подкожной опухоли живых экспериментальных животных

Изобретение относится к области медицины, а именно экспериментальной медицины, и может быть использовано для прижизненных наблюдений за уровнем активных форм кислорода (АФК) в органах и тканях. Способ включает предварительную подготовку экспериментальных животных с подкожно привитой опухолью,...
Тип: Изобретение
Номер охранного документа: 0002726074
Дата охранного документа: 08.07.2020
23.04.2023
№223.018.51ab

Способ получения модифицированных наночастиц магнетита, легированных гадолинием

Изобретение относится к области неорганической химии, а именно к способу получения модифицированных наночастиц магнетита, легированных гадолинием. Данные наночастиц могут быть использованы, например, в качестве двойных контрастных агентов для МРТ-диагностики. Способ получения модифицированных...
Тип: Изобретение
Номер охранного документа: 0002738118
Дата охранного документа: 08.12.2020
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
23.04.2023
№223.018.5219

Способ комбинаторного получения новых композиций материалов в многокомпонентной системе

Изобретение относится к области металлургии, в частности к способу комбинаторного получения композиций материалов в многокомпонентной системе. Может использоваться для построения фазовых диаграмм и поиска новых интерметаллических соединений в многокомпонентных системах. Из тугоплавкого...
Тип: Изобретение
Номер охранного документа: 0002745223
Дата охранного документа: 22.03.2021
Показаны записи 181-190 из 190.
04.04.2018
№218.016.3124

Автоматический нейросетевой настройщик параметров пи-регулятора для управления нагревательными объектами

Автоматический нейросетевой настройщик параметров ПИ-регулятора для управления нагревательными объектами содержит уставку по температуре, ПИ-регулятор, объект управления, два блока задержки сигналов, нейросетевой настройщик, соединенные определенным образом. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002644843
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
09.06.2018
№218.016.5db3

Способ газификации различных видов топлива в политопливном газогенераторе

Изобретение может быть использовано в энергетике и химической промышленности. Газификацию топлива осуществляют в политопливном газогенераторе барботажного типа. В ванну оксидного расплава сбоку струями подают газообразный окислитель. Брикеты, состоящие из твердого и жидкого топлива, загружают...
Тип: Изобретение
Номер охранного документа: 0002656487
Дата охранного документа: 05.06.2018
17.03.2019
№219.016.e2d0

Способ пирометаллургической переработки окисленной никелевой руды

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленной никелевой руды, содержащей цветные металлы и железо, с получением ферроникеля и чугуна. Способ включает предварительный подогрев исходной шихты совместно с флюсующими добавками без...
Тип: Изобретение
Номер охранного документа: 0002682197
Дата охранного документа: 15.03.2019
20.05.2019
№219.017.5d1f

Способ пирометаллургической переработки окисленной никелевой руды с получением ферроникеля в плавильном агрегате

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленной никелевой руды, содержащей цветные металлы и железо, с получением ферроникеля, содержащего не менее 70% никеля, в плавильном агрегате. В способе осуществляют предварительный нагрев...
Тип: Изобретение
Номер охранного документа: 0002688000
Дата охранного документа: 17.05.2019
19.06.2019
№219.017.89c2

Способ легирования чугуна марганцем

Изобретение относится к черной металлургии и может быть использовано для легирования чугуна марганцем. Легирование осуществляют отвальным шлаком силикотермической плавки рафинированных марганцевых сплавов, содержащим, мас.%: 18-22 MnO, 0,003-0,005 P, 26-29 SiO, 43-46 CaO, 2-4 AlO, 2-4 MgO,...
Тип: Изобретение
Номер охранного документа: 0002458994
Дата охранного документа: 20.08.2012
19.06.2019
№219.017.89ca

Шихта для выплавки высокоуглеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке высокоуглеродистого ферромарганца. Шихта содержит, мас.%: отвальный шлак силикотермической плавки металлического марганца 1-88, кокс 5-25, известняк 0-20, железосодержащие добавки 0-10, марганецсодержащее сырье -...
Тип: Изобретение
Номер охранного документа: 0002456363
Дата охранного документа: 20.07.2012
+ добавить свой РИД