×
25.08.2017
217.015.a902

БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002611333
Дата охранного документа
21.02.2017
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений. В предлагаемом способе измерения уровня жидкости в емкости технический результат достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, записывают эти данные в виде массива выборок с частотой за время периода модуляции, определяют уровень по частоте максимума спектральной плотности сигнала разностной частоты. При этом дополнительно массив данных сигнала разностной частоты записывается с частотой , меняющейся пропорционально отклонению от линейной частотной характеристики измерительной системы, а затем вновь выбирается равномерно для спектральной обработки. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.

Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989. 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 2 мм) в диапазоне измерения от 0,3 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний.

Реализацию способа рассмотрим на примере бесконтактного радиоволнового уровнемера, использующего в работе линейную частотную модуляцию несущей волны (ЛЧМ). Эти частотно-модулированные электромагнитные волны излучаются в сторону поверхности жидкости по нормали к ней. Временное запаздывание отраженной от контролируемой поверхности волны относительно падающей приводит к сдвигу частоты между излученными и отраженными волнами. Этот сигнал разностной частоты (СРЧ) или сигнал биений выделяется на специальном элементе - смесителе, входящем в состав измерительного устройства. В этом случае частота отраженного от поверхности контролируемой среды сигнала отличается от частоты зондирующего сигнала на величину частоты сигнала биений: , где L - расстояние до поверхности контролируемой среды или уровень, - максимальный диапазон перестройки частоты, ТM - период линейной модуляции, с - скорость света. Из этой формулы следует

Как и у всех частотных дальномеров, здесь имеется методическая дискретная ошибка определения дальности δ, обусловленная конечным числом периодов сигнала биений за время периода модуляции, которое может отличаться от целого:

Наличие этой ошибки определяется способом измерения частоты, который основан на подсчете числа нулей сигнала за определенное время. Так как при незначительном изменении расстояния меняется фаза, а следовательно, и форма сигнала на выходе смесителя, то результат подсчета меняется дискретно. В связи с этим используются различные технические решения, направленные на уменьшение этой погрешности (Кагаленко Б.И., Марфин В.П., Мещеряков В.П. Дальномер повышенной точности // Измерительная техника.1981. №12. С. 68-69.).

Известно также техническое решение - измерение расстояния по максимальному или средневзвешенному значению спектра сигнала биений в методе с использованием частотной модуляции, которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа (Теоретические основы радиолокации / Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970. 560 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней частотно-модулированными электромагнитными волнами, приеме отраженных электромагнитных волн, выделении сигнала биений на выходе смесителя между падающими и отраженными электромагнитными волнами и вычислении расстояния по разностной частоте сигнала СРЧ, определяемой по максимальному значению его частотного спектра.

Однако при этом методическая дискретная ошибка (2) сохраняется, поскольку спектральный анализ основан на разложении сигнала по целому числу гармоник, в то время как реальный максимум при измерении расстояния может располагаться и между гармониками. Чтобы измерить частоту СРЧ на минимальном расстоянии 0.3 м, надо иметь такую , чтобы можно было наблюдать хотя бы один период сигнала СРЧ. Тогда это будет первая гармоника в спектре СРЧ. Из формулы (1) следует, что в этом случае равна 500 МГц, а ошибка δ равна 0,15 м при диапазоне измерения свыше 0,3 м. Поэтому, чтобы обеспечить приемлемую точность, приходится увеличивать ; обычно эта величина для промышленных уровнемеров составляет 1÷2 ГГц, что соответствует δ=7,5÷3,75 см. Дальнейшее увеличение точности достигается путем использования сглаживающих процедур (Езерский В.В., Давыдочкин В.М. Оптимизация спектральной обработки сигнала прецизионного датчика расстояния на основе частотного дальномера // Измерительная техника. 2005. №2. С. 21-25.). Однако использование больших значений приводит к увеличению дополнительных погрешностей из-за возрастающего влияния нелинейности частотной характеристики СВЧ-блоков схемы измерителя, которое приводит к расширению спектра сигнала биений, и, соответственно, к большей ошибке в определения максимума спектральной плотности. Все это вместе с высокой стоимостью широкополосного устройства с высокой равномерностью частотной характеристики приводит к снижению функциональных параметров уровнемера.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, записывают эти данные в виде массива выборок с частотой fs за время периода модуляции, определяют уровень по частоте максимума спектральной плотности сигнала разностной частоты. При этом дополнительно массив данных сигнала разностной частоты записывается с частотой fsi, меняющейся пропорционально отклонению от линейной частотной характеристики измерительной системы, а затем вновь выбирается равномерно для спектральной обработки.

Предлагаемый способ поясняется чертежами, где на фиг. 1 приведена структурная схема устройства для реализации способа и его частотная характеристика, а на фиг. 2 - временные диаграммы, поясняющие действие способа.

На фиг. 1 показан модулятор 1, генератор 2, направленный ответвитель 3, передающая антенна 4, приемная антенна 5, смеситель 6, блок предварительной обработки сигнала -7, вычислительный блок 8.

Способ реализуется следующим образом. Генератор линейно-изменяющегося напряжения 1 модулирует частоту генератора СВЧ 2, с выхода которого электромагнитные колебания проходят через направленный ответвитель 3 на антенну 4 и излучаются в сторону контролируемой поверхности 9. Отраженная электромагнитная волна принимается антенной 5 и поступает на смеситель 6, куда также поступает часть мощности падающей волны от направленного ответвителя 3. На выходе смесителя 6 формируется сигнал разностной частоты, который поступает в блок предварительной обработки сигнала - 7. В этом блоке производится запись данных в массив за время периода частотной модуляции с частотой выборки, меняющейся пропорционально отклонению частотной характеристики измерительной системы от линейной, затем данные с одинаковой частотой выборки подаются на вычислительный блок 8, где уровень определяется по частоте максимума спектральной плотности линеаризированного сигнала разностной частоты.

На фиг. 1,б представлена идеальная линейная частотная характеристика датчика - 1 и реальная, нелинейная - 2. Обе кривые нарисованы на графике в относительных единицах , где - частота, ΔF - максимальная девиация, и t/ТM, где t - время, ТM - период модуляции. Формула определения уровня (1) справедлива в случае идеальной характеристики датчика - 1 на фиг. 2,а. Присутствие нелинейности приводит к соответствующим локальным изменениям частоты СРЧ. В результате его спектр расплывается, что увеличивает ошибку при определении максимума спектральной плотности и, следовательно, уровня. Однако если, в соответствии с отклонениями частотной характеристики от линейной, менять частоту выборки при записи массива данных, а затем на выходе обратно считать данные в равномерном временном масштабе, можно получить идеально линейную частотную характеристику измерительной системы.

Рассмотрим процедуру калибровки с целью определения необходимых локальных частот выборок для линеаризации на следующем примере. Для численного моделирования введем следующие исходные данные для нелинейной частотной характеристике датчика соответствующей кривой 2 на фиг. 2,а. ТM=1 с, ΔF=1 ГГц, N(число локальных областей)=11, Δt=0,1 с, L=10 м, количество выборок - 1100, по 100 на каждый участок Δt. Частота биений при этих данных согласно формуле (1) равна 66,66 Гц. Локальные частоты определим с помощью прямого непрерывного вейвлет-преобразования (ПНВП). Вычислим для модельного сигнала биений U(t) по формуле (2) коэффициенты ПНВП:

где а - частотный масштабирующий коэффициент, b - коэффициент временного масштаба, ψ - вейвлетная функция, в нашем примере это комплексный вейвлет Гаусса 4-го порядка. Результат вычислений представлен на фиг. 2,а. Далее, на каждом временном интервале Δti частота выборок изменяется пропорционально частоте отклонения от линейной зависимости и, следовательно, обратно пропорционально отклонению масштабирующего коэффициента а. Как известно, коэффициенты а связаны с частотой сигнала посредством передаточной функции [5]:

где FC - центральная частота вейвлета, fsi - частота выборки для соответствующего сегмента Δti. Удобнее при этом пересчитать частоту в относительные единицы, как на фиг. 1,б. Это дает возможность линеаризовать частотную характеристику во всем диапазоне ΔF, локально изменяя частоты выборок. Далее вновь полученный массив данных с виртуальной нелинейной шкалой по горизонтальной координате вновь перемасштабируется с равномерным количеством выборок и вновь выполняется ПНВП. В случае линеаризации данных будет наблюдаться картина, представленная на фиг. 2,б. Максимумы энергетической плотности коэффициентов концентрируются на линии а=10,1, - что соответствует частоте биений 66,66 Гц. В результате процедуры линеаризации спектр обработанного таким образом сигнала значительно сужается (см. фиг. 2,в) по сравнению с сигналом без обработки. В дальнейшей работе полученный массив выборок fsi используется для определения уровня во всем рабочем диапазоне измерений.

Таким образом, в результате описанной процедуры обработки входных данных сигнал разностной частоты очищается от искажений, вызванных нелинейностью частотной характеристики, что позволяет повысить точность определения частоты максимума его спектральной плотности, а следовательно, уровня жидкости. Результаты численного моделирования показали возможность использования измерительных систем с частотной нелинейностью до 10-15% без потери в точности по сравнению с идеальной характеристикой. Это обстоятельство, кроме прочего, позволяет использовать более дешевые СВЧ-комплектующие, чем достигается существенный экономический эффект.

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, записывают эти данные в виде массива выборок с частотой f за время периода модуляции, определяют уровень по частоте максимума спектральной плотности сигнала разностной частоты, отличающийся тем, что массив данных сигнала разностной частоты записывается с частотой f, меняющейся пропорционально отклонению от линейной частотной характеристики измерительной системы, а затем вновь выбирается равномерно для спектральной обработки.
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 276.
27.12.2014
№216.013.1521

Способ измерения резонансной частоты

Изобретение относится к измерительной технике и предназначено для высокоточного определения резонансной частоты с использованием цифровых методов обработки сигналов, а также определения величин, которые функционально связаны с резонансной частотой резонаторов, входящих в состав радиочастотных...
Тип: Изобретение
Номер охранного документа: 0002536833
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1618

Система определения гидродинамических коэффициентов математической модели движения судна

Изобретение относится к области судовождения - автоматическому управлению движением судна. Система определения гидродинамических коэффициентов математической модели движения судна содержит задатчик идентификационных маневров управления движением судна, объект управления, а также блок...
Тип: Изобретение
Номер охранного документа: 0002537080
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1a5f

Устройство фильтрации гармоник сетевого напряжения

Использование: в области электроэнергетики. Технический результат - уменьшение потерь энергии, обусловленных постоянным подключением к сети резонансных фильтров-подавителей, гармоники которых в данный момент отсутствуют. Устройство фильтрации гармоник сетевого напряжения содержит включенный в...
Тип: Изобретение
Номер охранного документа: 0002538179
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ae4

Кольцевой генератор на кмдп транзисторах

Изобретение относится к области вычислительной техники и может быть использовано в системах тактовой синхронизации микропроцессорных устройств. Достигаемый технический результат - расширение функциональных возможностей путем генерирования сигналов типа меандра-трапеции, кроме сигналов типа...
Тип: Изобретение
Номер охранного документа: 0002538312
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2488

Устройство анализа результатов тестирования для поиска неисправных блоков

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей. Устройство содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами...
Тип: Изобретение
Номер охранного документа: 0002540805
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25c2

Способ измерения резонансной частоты

Изобретение относится к измерительной технике. В частности, оно может быть использовано в радиочастотных резонансных датчиках. Способ измерения заключается в том, что периодически на вход резонатора подают колебания с частотой, изменяющейся дискретно с заданным шагом в прямом и обратном...
Тип: Изобретение
Номер охранного документа: 0002541119
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.28a2

Устройство для оценки экономической эффективности процесса управления сложными системами

Изобретение относится к вычислительной технике и может быть использовано для оценки экономической эффективности процесса управления сложными системами. Техническим результатом является повышение надежности процесса управления, а также расширение арсенала технических вычислительных средств....
Тип: Изобретение
Номер охранного документа: 0002541859
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2bc3

Парафазный логический элемент

Изобретение относится к парафазному логическому элементу. Технический результат заключается в уменьшении потребляемой мощности в расчете на один такт. Логический элемент содержит два транзистора р-типа, первый тактовый транзистор n-типа и логический блок, включающий прямые и инверсные ключевые...
Тип: Изобретение
Номер охранного документа: 0002542660
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2e42

Радиоволновое устройство для обнаружения живых людей под завалами и за стенами зданий

Изобретение относится к поисково-спасательной службе и может быть использовано для активного зондирования с целью объективного определения наличия в них человека с признаками жизни и оценки его состояния по частотам дыхания и пульса. Технический результат - повышение точности обнаружения живого...
Тип: Изобретение
Номер охранного документа: 0002543310
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.346a

Способ определения диаметра диэлектрического полого цилиндрического изделия

Изобретение относится к измерительной технике и представляет собой способ определения диаметра диэлектрического полого цилиндрического изделия. При реализации способа контролируемое изделие предварительно помещают в электрическое поле, облучают изделие электромагнитной волной, принимают...
Тип: Изобретение
Номер охранного документа: 0002544893
Дата охранного документа: 20.03.2015
Показаны записи 51-60 из 181.
27.12.2014
№216.013.1521

Способ измерения резонансной частоты

Изобретение относится к измерительной технике и предназначено для высокоточного определения резонансной частоты с использованием цифровых методов обработки сигналов, а также определения величин, которые функционально связаны с резонансной частотой резонаторов, входящих в состав радиочастотных...
Тип: Изобретение
Номер охранного документа: 0002536833
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1618

Система определения гидродинамических коэффициентов математической модели движения судна

Изобретение относится к области судовождения - автоматическому управлению движением судна. Система определения гидродинамических коэффициентов математической модели движения судна содержит задатчик идентификационных маневров управления движением судна, объект управления, а также блок...
Тип: Изобретение
Номер охранного документа: 0002537080
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1a5f

Устройство фильтрации гармоник сетевого напряжения

Использование: в области электроэнергетики. Технический результат - уменьшение потерь энергии, обусловленных постоянным подключением к сети резонансных фильтров-подавителей, гармоники которых в данный момент отсутствуют. Устройство фильтрации гармоник сетевого напряжения содержит включенный в...
Тип: Изобретение
Номер охранного документа: 0002538179
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ae4

Кольцевой генератор на кмдп транзисторах

Изобретение относится к области вычислительной техники и может быть использовано в системах тактовой синхронизации микропроцессорных устройств. Достигаемый технический результат - расширение функциональных возможностей путем генерирования сигналов типа меандра-трапеции, кроме сигналов типа...
Тип: Изобретение
Номер охранного документа: 0002538312
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2488

Устройство анализа результатов тестирования для поиска неисправных блоков

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей. Устройство содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами...
Тип: Изобретение
Номер охранного документа: 0002540805
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25c2

Способ измерения резонансной частоты

Изобретение относится к измерительной технике. В частности, оно может быть использовано в радиочастотных резонансных датчиках. Способ измерения заключается в том, что периодически на вход резонатора подают колебания с частотой, изменяющейся дискретно с заданным шагом в прямом и обратном...
Тип: Изобретение
Номер охранного документа: 0002541119
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.28a2

Устройство для оценки экономической эффективности процесса управления сложными системами

Изобретение относится к вычислительной технике и может быть использовано для оценки экономической эффективности процесса управления сложными системами. Техническим результатом является повышение надежности процесса управления, а также расширение арсенала технических вычислительных средств....
Тип: Изобретение
Номер охранного документа: 0002541859
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2bc3

Парафазный логический элемент

Изобретение относится к парафазному логическому элементу. Технический результат заключается в уменьшении потребляемой мощности в расчете на один такт. Логический элемент содержит два транзистора р-типа, первый тактовый транзистор n-типа и логический блок, включающий прямые и инверсные ключевые...
Тип: Изобретение
Номер охранного документа: 0002542660
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2e42

Радиоволновое устройство для обнаружения живых людей под завалами и за стенами зданий

Изобретение относится к поисково-спасательной службе и может быть использовано для активного зондирования с целью объективного определения наличия в них человека с признаками жизни и оценки его состояния по частотам дыхания и пульса. Технический результат - повышение точности обнаружения живого...
Тип: Изобретение
Номер охранного документа: 0002543310
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.346a

Способ определения диаметра диэлектрического полого цилиндрического изделия

Изобретение относится к измерительной технике и представляет собой способ определения диаметра диэлектрического полого цилиндрического изделия. При реализации способа контролируемое изделие предварительно помещают в электрическое поле, облучают изделие электромагнитной волной, принимают...
Тип: Изобретение
Номер охранного документа: 0002544893
Дата охранного документа: 20.03.2015
+ добавить свой РИД