×
25.08.2017
217.015.a1a6

Результат интеллектуальной деятельности: СПОСОБ БЕЗАБРАЗИВНОЙ ДОВОДКИ СОПРЯГАЕМЫХ ПОВЕРХНОСТЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств для управления подачи жидких и газовых сред. В способе безабразивной доводки металлических сопрягаемых поверхностей в начале обработки между сопрягаемыми поверхностями, служащими электродами, устанавливают минимальный зазор по границе начала его пробоя низковольтным током в слабопроводящем электролите с незначительным содержанием металлического наполнителя с размером частиц 8 нм, а далее увеличивают объемное содержание упомянутого металлического наполнителя с одновременным повышением межэлектродного зазора и поддержанием его величины на границе начала пробоя между электродами до стабилизации величины тока, проходящего через электроды. Затем осуществляют вибрацию сопрягаемых поверхностей в направлении друг к другу, плавно увеличивают амплитуду вибраций до стабильного получения пауз тока и продолжают обработку до получения на одной из сопрягаемых поверхностей минимальной стабильной шероховатости, после чего меняют полярность электродов и при таком же режиме обработки формируют шероховатость на другой сопрягаемой поверхности. Техническим результатом изобретения является обеспечение минимальной шероховатости и высокой точности сопряжения поверхностей. 3 ил., 1 пр.

Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств для управления подачи жидких и газовых сред.

Известен способ электрохимической обработки по а.с. №537782 СССР, М. Кл.2 B23P 1/04 (В.П. Смоленцев, З. Б. Садыков); заявл. 19.05.75; опубл. 05.12.76, Бюл. №45, в котором для повышения точности обработки на диэлектрический трафарет, установленный в межэлектродном зазоре, подают колебания с частотой до 50 Гц. К недостаткам известного способа относятся необходимость увеличения межэлектродного зазора, как минимум, на толщину трафарета и значительное ухудшение шероховатости обрабатываемой поверхности.

Наиболее близким является способ электрохимической обработки по патенту 2216437 РФ, МПК7 B23H 3/08 (Смоленцев В.П., Газизуллин К.М.); заявл. 27.12.2001; опубл. 20.11.2003, Бюл. №32, в котором для повышения производительности и точности обработки в качестве жидкой токопроводящей рабочей среды используют реологическую жидкость, процесс выполняют импульсным током, где длительность импульсов регулируют вязкостью рабочей среды, а пауз - по времени восстановления максимального тока в импульсе.

К недостатку способа относится постоянное содержание металлического нанонаполнителя в реологической жидкости, что не позволяет достичь минимальной шероховатости и высокой точности сопряжения поверхностей.

В качестве прототипа выбираем способ по патенту 2216437 [1].

Изобретение направлено на снижение шероховатости и повышение точности сопрягаемых поверхностей при их безабразивной доводке. Это достигается тем, что в начале доводки между сопрягаемыми поверхностями устанавливают минимальный зазор по границе начала его пробоя в слабопроводящем электролите низковольтным током, далее увеличивают объемное содержание металлического нанонаполнителя, одновременно повышая межэлектродный зазор до конечной величины с поддержанием границы его пробоя до стабилизации величины тока, проходящего через электроды, затем включают вибрацию сопрягаемых поверхностей в направлении друг к другу, плавно увеличивают относительно конечного зазора амплитуду вибраций до стабильного получения пауз тока, продолжают процесс до получения на одной из сопрягаемых поверхностей минимальной стабильной шероховатости, после чего меняют полярность электродов и, не изменяя, режима формируют шероховатость на другой сопрягаемой поверхности.

Способ поясняется фиг. 1, 2, 3. На фиг. 1 показана зависимость изменения тока, протекающего в среде слабого электролита в виде промышленной воды при напряжении между металлическими сопрягаемыми поверхностями, служащими электродами, 6 В от объемного содержания металлического нанонаполнителя с размером частиц 8 нм. На фиг. 2 приведено изменение пауз между импульсами постоянного тока от амплитуды вибраций при частоте 50 Гц. На фиг. 3 приведено изменение шероховатости поверхности от начала доводки до стабильной достижимой величины от времени протекания процесса доводки на режимах, приведенных на фиг. 1 и 2.

Способ осуществляют в следующей последовательности: устанавливают металлические сопрягаемые поверхности в емкость со слабопроводящим электролитом, в котором, в частности, может быть промышленная вода. К сопрягаемым поверхностям подключают источники низковольтного постоянного тока (на фиг. 1, 6B), разводят сопрягаемые поверхности до устранения короткого замыкания в виде пробоя. При повторном использовании промышленной воды в используемом слабопроводящем очищенном электролите остается незначительное остаточное содержание металлического нанонаполнителя. После подключения тока сопрягаемые поверхности становятся электродами. И плавно увеличивают объемное содержание металлического нанонаполнителя в электролите (фиг. 1), одновременно увеличивая межэлектродный зазор с поддержанием его величины на границе начала пробоя между электродами. За счет увеличения электропроводимости электролита возрастает сила проходящего тока, как это показано на фиг. 1 для металлического нанонаполнителя с размерами частиц 8 нм. После достижения объемного содержания 10-12% нанонаполнителя в электролите ток стабилизируется (фиг. 1). Затем включают вибрацию одного или нескольких электродов (с частотой 50 Гц, на фиг. 2) в направлении друг к другу с перемещением от величины зазора, установленного в конце процесса на фиг. 1. С увеличением амплитуды (фиг. 2) ток приобретает пульсирующий характер и образуются паузы тока, во время которых образуется обратная полуволна, в течение которой выравнивается равномерность состава нанонаполнителя. Для случая, приведенного на фиг. 2, стабилизация длительности пауз наступает при амплитуде около 100 мкм (получено экспериментально).

При токе на фиг. 1 и амплитуде на фиг. 2 выполняют доводку одной из сопрягаемых поверхностей, являющуюся положительным электродом (анодом) со временем обработки (фиг. 3) не менее интервала времени, обеспечивающего снижение шероховатости (Ra) до нижней границы ее изменения (около 0,16 мкм на фиг. 3). Время доводки этой сопрягаемой поверхности устанавливают экспериментально по графику, приведенному на фиг. 3. При этом следует учесть, что увеличенное время обработки (фиг. 3) не ухудшает шероховатость, что позволяет использовать такой режим при обработке.

После доводки сопрягаемой поверхности, служащей анодом, полярность переключают и выполняют на том же режиме доводку другой сопрягаемой поверхности.

Наличие в межэлектродном зазоре металлических наночастиц снижает электрическое сопротивлений электролита, за счет чего возрастает ток и его плотность, а наличие вибраций выравнивает условия протекания процесса доводки, позволяя при незначительных припусках устранить принудительную прокачку электролита, достигая за счет этого экономии энергопотребления и упрощения конструкции оборудования. За счет насосного действия вибрации сопрягаемых поверхностей наночастицы ускоряют перемещение продуктов обработки от зоны удаления микронеровностей шероховатости и интенсифицирует процесс доводки. Перемещение наночастиц в магнитном поле проходящего тока депассивирует обрабатываемую поверхность и позволяет снизить высоту микронеровностей относительно электрохимической обработки в электролитах на базе нейтральных солей.

Пример осуществления способа.

Необходимо выполнить безабразивную доводку плоского запорного устройства из стали 12X18H10T с площадью контакта 3 см2, работающего при давлении 32 МПа.

Сопрягаемые поверхности обработаны шлифованием с погрешностью ±5 мкм при шероховатости Ra=0,63 мкм.

Обработка выполнялась в среде промышленной воды с содержанием остаточного нанонаполнителя менее 1% по объему и очищенной от продуктов обработки предшествующей операции доводки.

Общий припуск на доводку е превышает 10-15 мкм, поэтому за счет вибрации продукты обработки будут переходить в электролит без его прокачки. Начальный межэлектродный зазор составил 0,01 мм. При напряжении 6 В стабилизация наступила при содержании металлического нанонаполнителя в электролите около 12-13% по объему. При этом конечный межэлектродный зазор увеличился до 0,02 мм.

Вибрация выполнялась при частоте 50 Гц, при этом амплитуда составила 110 мкм, когда паузы тока стали стабильными.

На таком режиме проведена доводка одной сопрягаемой поверхности (время обработки 6 с), после чего переключили полярность и на том же режиме выполнили доводку другой поверхности.

В результате погрешность в изменении зазора между сопрягаемыми поверхностями снизилась до ±1 мкм, а шероховатость Ra=0,12 мкм.

Способ безабразивной доводки металлических сопрягаемых поверхностей, включающий подключение сопрягаемых поверхностей к источнику низковольтного постоянного тока и обработку сопрягаемых поверхностей, служащих электродами, низковольтным постоянным током в слабопроводящем электролите с металлическим наполнителем, отличающийся тем, что в начале обработки между сопрягаемыми поверхностями устанавливают минимальный зазор по границе начала его пробоя низковольтным током в слабопроводящем электролите с незначительным содержанием металлического наполнителя с размером частиц 8 нм, а далее увеличивают объемное содержание упомянутого металлического наполнителя с одновременным повышением межэлектродного зазора и поддержанием его величины на границе начала пробоя между электродами до стабилизации величины тока, проходящего через электроды, затем осуществляют вибрацию сопрягаемых поверхностей в направлении друг к другу, плавно увеличивают амплитуду вибраций до стабильного получения пауз тока и продолжают обработку до получения на одной из сопрягаемых поверхностей минимальной стабильной шероховатости, после чего меняют полярность электродов и при таком же режиме обработки формируют шероховатость на другой сопрягаемой поверхности.
СПОСОБ БЕЗАБРАЗИВНОЙ ДОВОДКИ СОПРЯГАЕМЫХ ПОВЕРХНОСТЕЙ
СПОСОБ БЕЗАБРАЗИВНОЙ ДОВОДКИ СОПРЯГАЕМЫХ ПОВЕРХНОСТЕЙ
Источник поступления информации: Роспатент

Показаны записи 211-220 из 256.
13.01.2017
№217.015.66c6

Привод линейного перемещения

Изобретение относится к электротехнике, к электродинамическим элементам, предназначенным для преобразования электрической энергии в механическую, и может быть использовано в робототехнике, преимущественно в исполнительных системах манипулятора. Технический результат состоит в повышении усилия и...
Тип: Изобретение
Номер охранного документа: 0002592070
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6926

Гидравлическая система скрепера

Изобретение относится к землеройно-транспортному машиностроению, а именно к гидроприводам рабочих органов скреперов. Гидравлическая система скрепера включает насос, бак, фильтр, трехсекционный гидрораспределитель, каждая секция которого соединена с одним из исполнительных гидроцилиндров привода...
Тип: Изобретение
Номер охранного документа: 0002591706
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8b97

Сканер ближнего электрического поля для двухсторонних и многослойных печатных плат

Изобретение относится к измерительной технике, представляет собой устройство для сканирования ближнего электрического или магнитного поля источников электромагнитного излучения и может быть использовано при автоматическом измерении напряженности полей для решения задач обеспечения...
Тип: Изобретение
Номер охранного документа: 0002604113
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9f88

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к области ракетной техники, а именно камерам жидкостных ракетных двигателей (ЖРД), и может быть использовано при создании высокоэкономичных смесительных головок и камер ЖРД для перспективных средств выведения. Смесительная головка камеры жидкостного ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002606202
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a213

Теплозащитное нанокомпозитное покрытие и способ его формирования

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Теплозащитное нанокомпозитное покрытие, содержащее оксид циркония, нанесенное на поверхность изделия из...
Тип: Изобретение
Номер охранного документа: 0002606814
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a21b

Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного покрытия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного...
Тип: Изобретение
Номер охранного документа: 0002606826
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a22c

Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую...
Тип: Изобретение
Номер охранного документа: 0002606815
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a2b2

Способ нанесения теплозащитного композитного покрытия

Изобретение относится к напылению теплозащитных покрытий и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на поверхность изделия...
Тип: Изобретение
Номер охранного документа: 0002607056
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a2f3

Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую...
Тип: Изобретение
Номер охранного документа: 0002607055
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a66a

Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой...
Тип: Изобретение
Номер охранного документа: 0002608157
Дата охранного документа: 16.01.2017
Показаны записи 211-220 из 312.
27.12.2015
№216.013.9dd2

Затвор клиновой задвижки

Изобретение относится к трубопроводной арматуре для жидких и газообразных сред. Может быть использовано в нефтегазодобывающей, нефтехимической, энергетической и других отраслях промышленности. Затвор клиновой задвижки содержит корпус с входным и выходным патрубками, цельный клин,...
Тип: Изобретение
Номер охранного документа: 0002572032
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9dd4

Способ изготовления тракта охлаждения теплонапряженных конструкций

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками. Способ изготовления тракта охлаждения теплонапряженных конструкций, заключающийся в получении токарной...
Тип: Изобретение
Номер охранного документа: 0002572034
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9dd6

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную...
Тип: Изобретение
Номер охранного документа: 0002572036
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e37

Способ установки пленочных образцов при измерении температурной зависимости электрического сопротивления

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора. Внутри корпуса образец размещают в С-образных зажимах с плоскими губками, выполненными из вольфрамовой...
Тип: Изобретение
Номер охранного документа: 0002572133
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f21

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов. Синтез осуществляют как...
Тип: Изобретение
Номер охранного документа: 0002572374
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f28

Мехатронно-модульный робот

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысить эффективность...
Тип: Изобретение
Номер охранного документа: 0002572381
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f29

Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания

Изобретение относится к робототехнике. Технический результат заключается в создании мехатронно-модульного робота с многоальтернативной оптимизацией моделей их структурного синтеза для ориентации в окружающей среде. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой...
Тип: Изобретение
Номер охранного документа: 0002572382
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f2a

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к робототехнике. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов, повышении эффективности ориентации в окружающей среде и надежности работы создаваемых...
Тип: Изобретение
Номер охранного документа: 0002572383
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a347

Ветродвигатель

Изобретение относится к области ветроэнергетики, в частности к ветродвигателям. Ветродвигатель содержит поворотное в горизонтальной плоскости основание с двумя вертикальными роторами, обтекатель и стабилизатор. Поворотное основание снабжено горизонтальной планкой, ориентированной параллельно...
Тип: Изобретение
Номер охранного документа: 0002573441
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a35f

Способ электрохимического изготовления углублений, образующих турбулизаторы на ребрах и в донной части охлаждающих каналов теплонапряженных машин, и устройство для его осуществления

Изобретение относится к получению турбулизаторов на ребрах и в донной части охлаждающих каналов теплонапряженных машин. Способ включает электрохимическую обработку канала электродом-инструментом, имеющим гибкий шаблон из эластичного материала со сквозными окнами по профилю донной части и ребер...
Тип: Изобретение
Номер охранного документа: 0002573465
Дата охранного документа: 20.01.2016
+ добавить свой РИД