×
25.08.2017
217.015.9fe0

СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ТРЕХМЕРНОГО КАРКАСА ДЛЯ ЗАМЕЩЕНИЯ КОСТНО-ХРЯЩЕВЫХ ДЕФЕКТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к медицине и представляет собой способ получения композиционного трехмерного каркаса для замещения костно-хрящевых дефектов, включающий приготовление текучего гидрогеля, содержащего альгинат натрия и кальцийфосфатный наполнитель, нанесение гидрогеля на платформу, формирование трехмерного каркаса с последующей фиксацией структуры. Трехмерный каркас формируют методом 3D инъекционной печати послойным нанесением гидрогеля с фиксацией структуры на платформе, ступенчато охлаждаемой от -5±1°C до -30±1°C в зависимости от количества наносимых слоев, при этом температура в слое печати составляет -5±1°C. Текучий гидрогель содержит, мас.% в расчете на сухой вес гидрогеля: альгинат натрия - 40-90; наполнители - 10-60. Технический результат - получение трехмерного каркаса методом 3D инъекционной печати. Трехмерный каркас имеет высокую пластичность полимера, а в сочетании с заданной архитектурой и пористостью позволяет заполнять костно-хрящевые дефекты различной формы и размера. 2 з.п. ф-лы, 6 пр., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к медицине, а именно для пластической реконструкции поврежденных костно-хрящевых тканей.

В последние годы были разработаны методы прототипирования, которые могут быть применены для изготовления трехмерных (3D) конструкций заданной конфигурации простым, экономичным и воспроизводимым способом. Работы в этом направлении начаты сравнительно недавно, в основном зарубежными исследователями [Butscher A., Bohner М., Hofmann S., Gauckler L., R. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 2011, V. 7(3), P. 907-920]. К ним относятся методы стереолитографии, лазерного спекания и 3D печати. Последний метод особенно перспективен, но для его реализации необходимы материалы со свойствами, адаптированными к печати: например, биосовместимый полимер требуемой текучести, необходимой вязкости и т.д. При условии подбора полимера с требуемыми (для печати) характеристиками, возможно формирование с его участием пористых композиционных структур с соединениями кальция для замещения или регенерации костно-хрящевой ткани. В этом аспекте особый интерес представляют материалы на основе различных биополимеров природного происхождения, таких как коллаген, альгинат и хитозан. Однако традиционно используемый коллаген является чужеродным белком (чаще всего его получают из кожи свиней), поэтому он способен вызывать аллергические реакции, хроническое воспаление и являться переносчиком ряда инфекционных агентов, то есть его биосовместимость как ксеногенного белка весьма сомнительна. Этих недостатков лишен биологически активный рассасывающийся в организме пациента природный полимер - полисахарид - альгинат, характеризующийся биосовместимостью и обладающий широким спектром полезных медико-биологических свойств. Данный материал находит применение в медицинских изделиях и фармацевтических целях, в том числе в разных имплаптационных системах, при обработке ран различной этиологии, при регенерации мягких и твердых тканей, как гемостатический агент с антитромбогенными свойствами и как стимулятор иммунной системы против вирусной и бактериальной инфекции [Mogos G.D., Grumezescu A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. of Pharmaceutics 2014, V. 463, P. 127-136; Pawar S.N., Edgar K.J. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 2012, V.33, P. 3279-3305]. В свою очередь материалы на основе фосфатов кальция (ФК) могут быть использованы в качестве армирующей составляющей и быть контейнерами, содержащими биологически активные молекулы (факторы роста) или лекарственные средства. ФК - как аналоги минеральной составляющей костной ткани, широко используют для изготовления остеопластических материалов и керамических матриксов для клеток в биотехнологиях восстановления поврежденных костных тканей [Dorozhkin S.V. Calcium orthophosphate - based bioceramics. Materials 2013, V. 6, P. 3840-2942]. Сочетание свойств минерал-полимерных систем на основе подхода 3D прототипирования будет являться основой создания технологий материалов с уникальными свойствами.

Можно выделить близкую по техническому решению заявку на патент США №20150039097 US, в которой приведен способ формирования биологически совместимых материалов для регенерации тканей. Способ включает послойное нанесение полимерных слоев, из которых образуется изделие. В качестве полимеров используется полиуретан, полилактид, полигликолид, полилактид, поли(ε-капролактон), полидиоксанон, полиангидрид, триметиленкарбонат, поли (β-гидроксибутират), поли (g-этил глутамат), полицианоакрилат, полифосфазен, или их смеси. Раствор полимера наполняют частицами гидроксиапатита (ГА), трикальцийфосфата (ТКФ), композиционными фосфатами кальция и карбоната кальция, костными частицами из ксенографтов, костными частицами из аллотрансплантатов, костными частицами из аутотрансплантатов или их смеси. Способ получения биологически совместимых материалов включает формирование заданного количества слоев.

Однако известный способ не подразумевает использование альгината натрия в качестве каркаса, а армирующая составляющая включает в себя костные частицы, наночастицы гидроксиапатита или полимерные нановолокна.

Наиболее близким по техническому решению и достигаемому эффекту является композиционный текучий биомедицинский имплантат для внесения в дефект костной ткани [патент США №8697107 US, п. 1, п. 12]. Текучий биомедицинский имплантат включает матрицу-носитель, в том числе из биоразлагаемого полисахарида, содержащего альгинат натрия, и керамический материал, расположенный внутри носителя-матрицы. Имплантат имеет сшитую мембрану, образованную на поверхности матрицы-носителя с помощью сшивающего агента. Запатентованный текучий биомедицинский имплантат также содержит керамический материал: β-ТКФ, двухфазный ФК, фосфат магния, ГА или их смеси.

Однако способ-прототип имеет ряд недостатков, в том числе материал представляет собой 2-мерную мембрану и, таким образом, не может быть использован в качестве имплантата для замещения 3-мерных объемных дефектов. Материал содержит только керамический порошок: β-ТКФ, двухфазный ФК, фосфат магния, ГА или их смеси. Более того, способ изготовления материала исключает персонализацию, т.е. изготовления имплантата по индивидуальным трехмерным моделям ткани реального пациента, полученных, например, на рентгеновском томографе, и затем оперативно изготовлена ее точная копия или копия, пригодная для имплантации без дополнительной подгонки.

Технический результат предлагаемого изобретения - получение композиционного трехмерного каркаса на основе альгината натрия и фосфатов кальция методом 3D инъекционной печати.

Согласно изобретению, для достижения технического результата используется 3D инъекционная печать композиционных материалов на основе альгината натрия и фосфатов кальция с требуемыми геометрическими и структурными характеристиками.

Указанный технический результат при осуществлении изобретения достигается за счет того, что также как в известном изобретении США 8697107 US, каркас приготавливают из текучего гидрогеля, содержащего альгинат натрия и кальцийфосфатный наполнитель, нанесение гидрогеля на платформу и формирование трехмерного каркаса с последующей фиксацией.

Особенность заявляемого способа заключается в том, что трехмерный каркас формируют методом 3D инъекционной печати послойным нанесением гидрогеля с фиксацией структуры на платформе, ступенчато охлаждаемой от -5±1°C до -30±1°C в зависимости от количества наносимых слоев, при этом температура в слое печати составляет -5±1°C, при этом текучий гидрогель содержит, масс. % в расчете на сухой вес гидрогеля: альгинат натрия - 40-90; наполнители - 10-60. В качестве наполнителя в текучий гидрогель вводят порошки или гранулы: трикальцийфосфата, брушита, монетита, октакальцийфосфата, тетракальцийфосфата, гидроксиапатита, карбонатгидроксиапатита, фторгидроксиапатита или их другие модификации, при этом размеры частиц порошка или гранул изменяются от 20 до 500 мкм, а указанные наполнители могут быть смешаны в любом сочетании и в любом количестве между собой. Для получения трехмерного каркаса с пористостью от 40 до 95% - по завершении печати каркас помещают в морозильную камеру и выдерживают в течение 1 часа при температуре -50°C, затем подвергают сублимационной сушке в рабочей камере при вакууме 6-10-5 атм, при температуре конденсирующей поверхности -50°C в течение 10-12 часов, высушенный каркас сшивают 10% раствором хлорида кальция в шейкере-инкубаторе на протяжение 2 часов, далее полученный трехмерный каркас отмывают от остатка солей, и вновь подвергают сублимационной сушке для сохранения структуры.

Иными словами, изделие изготовлено таким образом, чтобы после имплантации в область реципиентного ложа диастаз между введенным материалом и костными стенками не превышал 1 мм на всем протяжении. Достижение персонализированных параметров обеспечивается применением технологии 3D печати. Исходным компонентом изделия служат чернила на основе альгината натрия и фосфатов кальция для 3D принтера. Для получения чернил готовят композиционный гидрогель, в котором дисперсная фаза (фосфаты кальция) не седиментируется в жидкой дисперсионной среде (раствор альгината натрия).

Изобретение поясняется подробным описанием способа, таблицей и примерами изготовления.

Способ осуществляют следующим образом.

В сухой чистый стакан заливается дистиллированная вода, которая перемешивается стеклянной верхнеприводной мешалкой на высоких оборотах (от 2500 до 3000 об/мин) и нагревается до температуры 40°C, после чего в жидкую среду помещается порошок альгината натрия. После полного растворения альгината натрия при перемешивании добавляют кальциевый фосфатный наполнитель в количестве до 50 масс. %. В качестве наполнителя вводят порошки или гранулы трикальцийфосфата, брушита, монетита, октакальцийфосфата, тетракальцийфосфата, гидроксиапатита, карбонатгидроксиапатита, фторгидроксиапатита или их другие модификации, при этом размеры частиц порошка или гранул изменяются от 20 до 500 мкм, а указанные наполнители могут быть смешаны в любом сочетании и в любом количестве между собой.

Методом 3D инъекционной печати из композиционных материалов получают трехмерный каркас, точно соответствующий по форме и размерам костно-хрящевому дефекту. С целью получения этих данных о дефекте могут использоваться методы лучевой диагностики, такие как компьютерная томография, рентгенография и др. Полученную компьютерную модель дефекта преобразуют в файлы STL формата, разбивающие ее на слои определенной толщины, соответствующие характеристикам используемых исходных материалов. Программа, содержащая необходимый набор STL файлов, вводится в компьютер, управляющий 3D-принтером. Приготовленный гидрогель загружают в картридж 3D-принтера, и по заданной программе (модели) осуществляется послойное нанесение геля на платформу для печати, ступенчато охлаждаемую для фиксации трехмерного каркаса от -5±1°C до -30±1°C в зависимости от количества наносимых слоев. После завершения процесса печати полученный трехмерный каркас извлекают из установки и помещают в морозильную камеру с температурой -50°C, время выдержки - 1 час. Далее трехмерный каркас подвергают сублимационной сушке в рабочей камере при вакууме 6-10-5 атм, при температуре конденсирующей поверхности -50°C в течение 10-12 часов. Высушенный трехмерный каркас сшивают 10% раствором хлорида кальция в шейкере-инкубаторе на протяжении 2 часов (трехмерный каркас/раствор = 100 г/ 80 мл). Полученный трехмерный каркас отмывают от остатка солей и вновь подвергают сублимационной сушке для сохранения структуры. В результате получают композиционный трехмерный каркас с пористостью от 40 до 95% в зависимости от состава.

При содержании ФК наполнителя больше 60 масс. % реализация 3D печати невозможна. Снижение наполнителя менее 5 масс. % не позволяет получать трехмерный каркас с равномерным распределением компонентов по объему. При температуре заморозки менее -5±1°C фиксации заданной структуры не происходит, а при температуре менее -30°C материал замерзает в сопле принтера, что не дает возможности реализовать процесс печати.

Пример 1.

Гидрогель альгината натрия с гранулами трикальцийфосфата 300-500 мкм (соотношение 70/30) помещали в картридж для печати 3D принтера. После чего данным гидрогелем происходит печать трехмерного каркаса по заданной траектории на платформу для печати, которая охлаждается элементами Пельтье с градиентным изменением температуры послойно -5±1°C до -30±1°C, в зоне (слое) печати температура -5±1°C. За счет охлаждения платформы происходит кристаллизация воды, которая находится в гидрогеле, таким образом происходит фиксация структуры напечатанного образца трехмерной конструкции. Полученный трехмерный каркас извлекают из установки и помещают в морозильную камеру с температурой -50°C, время выдержки - 1 час. Полученный образец подвергается сублимационной сушке при -50°C в течение 10-12 часов. Пористость полученного материала достигает 90%, прочность - 5,5 МПа.

Пример 2.

Гидрогель альгината натрия с гранулами трикальцийфосфата 300-500 мкм (соотношение 60/40) помещали в картридж для печати 3D принтера. После чего данным гелем происходит печать образца по заданной траектории на подложку, которая охлаждается элементами Пельтье с температурой -5±1°C до -30±1°C, в зоне (слое) печати температура -5±1°C. За счет охлаждения подложки происходит кристаллизация воды, которая находится в гидрогеле, таким образом происходит фиксация структуры напечатанного образца. Полученные заготовки подвергаются сублимационной сушке -50°C в течение 10-12 часов. Пористость полученных материалов достигает 88% и прочность 3,7 МПа.

Пример 3.

Гидрогель альгината натрия с гранулами трикальцийфосфата 300-500 мкм (соотношение 90/10) помещали в картридж для печати 3D принтера. После чего данным гелем происходит печать образца по заданной траектории на подложку, которая охлаждается элементами Пельтье с температурой -5±1°C до -30±1°C, в зоне (слое) печати температура -5±1°C. За счет охлаждения подложки, происходит кристаллизация воды, которая находится в гидрогеле, таким образом происходит фиксация структуры напечатанного образца. Полученные заготовки подвергаются сублимационной сушке -50°C в течение 10-12 часов. Пористость полученных материалов достигает 95% и прочность 2,4 МПа.

Пример 4.

Гидрогель альгината натрия с гранулами трикальцийфосфата 300-500 мкм (соотношение 70/30) помещали в картридж для печати 3D принтера. После чего данным гелем происходит печать образца по заданной траектории на подложку, которая охлаждается элементами Пельтье с температурой -3±1°C до -30±1°C, в зоне (слое) печати температура -3±1°C. При охлаждении не происходит кристаллизация воды, таким обозом не происходит фиксация структуры напечатанного образца. Полученные заготовки являются бесформенными. Провести механические испытания таких образцов не представляется возможным.

Пример 5.

Гидрогель альгината натрия с гранулами трикальцийфосфата 300-500 мкм (соотношение 70/30) помещали в картридж для печати 3D принтера. После чего данным гелем происходит печать образца по заданной траектории на подложку, которая охлаждается элементами Пельтье с температурой -8±1°C до -30±1°C, в зоне (слое) печати температура -8±1°C. При охлаждении происходит кристаллизация воды в сопле головки принтера, таким обозом не происходит формирование слоев. Реализация процесса печати не возможна.

Пример 6.

Гидрогель альгината натрия с гранулами гидроксиапатита 50-500 мкм (соотношение 85/15) помещали в форму и фиксировали водным раствором хлорида кальция при комнатной температуре. Пористость полученных материалов достигает 50%.

В соответствии с примерами также были изготовлены образцы материалов, имеющие составы в пределах заявленных, и определены их свойства в сравнении с прототипом. Полученные результаты сведены в таблицу (см. ниже).

Полученный трехмерный каркас предложенным способом имеет высокую пластичность полимера, а в сочетании с заданной архитектурой и пористостью позволяет заполнять костно-хрящевые дефекты различной формы и размера.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 72.
25.08.2017
№217.015.a91f

Способ дооперационного прогнозирования стадии и агрессивности рака предстательной железы

Изобретение относится к области медицины, в частности к способу дооперационного прогнозирования стадии и агрессивности рака предстательной железы. Способ дооперационного прогнозирования стадии и агрессивности рака предстательной железы, включающий определение в сыворотке крови больного до...
Тип: Изобретение
Номер охранного документа: 0002611380
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b639

Способ прогнозирования стадии и агрессивности рака предстательной железы до операции по лабораторным и клиническим параметрам

Изобретение относится к медицине и может быть использовано для дооперационного прогнозирования стадии и агрессивности рака предстательной железы (РПЖ). Определяют в сыворотке крови больного до начала лечения уровней общПСА, свПСА, [-2]проПСА. Определяют возраст больного. Высчитывают Индекс...
Тип: Изобретение
Номер охранного документа: 0002614501
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.c25c

Способ замещения орбито-оро-фациальных дефектов сложнокомпонентным лоскутом с одномоментной реконструкцией нижней стенки орбиты

Изобретение относится к области медицины, а именно к реконструктивно-пластической хирургии челюстно-лицевой области. Определяют необходимые размеры и форму трансплантата, формируют комбинированный кожно-мышечно-костный лоскут, состоящий из двух фрагментов на единой сосудистой ножке -...
Тип: Изобретение
Номер охранного документа: 0002617886
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c5f4

Способ получения корундовой керамики, содержащей металлический никель

Изобретение относится к области керамических материалов на основе корунда, использующихся в технике в качестве режущего инструмента, как носитель для никелевых, платиновых и палладиевых катализаторов, керамических мембран, применяемых для очистки сточных вод и др. Способ получения корундовой...
Тип: Изобретение
Номер охранного документа: 0002618768
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c873

Способ профилактики постторакотомического болевого синдрома в онкохирургии

Изобретение относится к медицине и может быть использовано для профилактики постторакотомического болевого синдрома (далее - ПТБС) в онкохирургии. Для этого за сутки до операции назначают перорально антиконвульсант прегабалин по 75 мг 2 раза/сутки и 75 мг за 2 часа до операции. Затем на...
Тип: Изобретение
Номер охранного документа: 0002619212
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.cb36

Кольцевая щелевая антенна

Изобретение относится к радиотехнике и может быть использовано в радиосистемах передачи информации, предъявляющих требования высокой степени электромагнитной совместимости конструктивных элементов системы, например, в малогабаритных космических аппаратах (КА). Решаемой задачей является...
Тип: Изобретение
Номер охранного документа: 0002620126
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cc5c

Карбонаткальциевый цемент для заполнения костных дефектов

Изобретение относится к медицине и может быть использовано для пластической реконструкции поврежденных костных тканей. Карбонаткальциевый цемент для заполнения костных дефектов характеризуется тем, что для его получения используют порошок кристаллической фазы карбоната кальция – кальцита, и...
Тип: Изобретение
Номер охранного документа: 0002620549
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.d1f0

Способ фотодинамической терапии неонкологических косметических дефектов кожи

Изобретение относится к медицине, а именно к дерматологии и косметологии, и может быть использовано при лечении неонкологических косметических поражений кожи. Осуществляют аппликационное нанесение на пораженные участки кожи лица фотосенсибилизатора на основе 5-аминолевулиновой кислоты. Спустя...
Тип: Изобретение
Номер охранного документа: 0002621845
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d50f

Способ эндомикроскопической диагностики раннего центрального рака легкого

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для эндомикроскопической диагностики раннего центрального рака легкого. Способ включает проведение через инструментальный канал бронхоскопа конфокального лазерного эндоскопического датчика для эндомикроскопии в...
Тип: Изобретение
Номер охранного документа: 0002622208
Дата охранного документа: 13.06.2017
Показаны записи 41-50 из 106.
25.08.2017
№217.015.a91f

Способ дооперационного прогнозирования стадии и агрессивности рака предстательной железы

Изобретение относится к области медицины, в частности к способу дооперационного прогнозирования стадии и агрессивности рака предстательной железы. Способ дооперационного прогнозирования стадии и агрессивности рака предстательной железы, включающий определение в сыворотке крови больного до...
Тип: Изобретение
Номер охранного документа: 0002611380
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b639

Способ прогнозирования стадии и агрессивности рака предстательной железы до операции по лабораторным и клиническим параметрам

Изобретение относится к медицине и может быть использовано для дооперационного прогнозирования стадии и агрессивности рака предстательной железы (РПЖ). Определяют в сыворотке крови больного до начала лечения уровней общПСА, свПСА, [-2]проПСА. Определяют возраст больного. Высчитывают Индекс...
Тип: Изобретение
Номер охранного документа: 0002614501
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.c25c

Способ замещения орбито-оро-фациальных дефектов сложнокомпонентным лоскутом с одномоментной реконструкцией нижней стенки орбиты

Изобретение относится к области медицины, а именно к реконструктивно-пластической хирургии челюстно-лицевой области. Определяют необходимые размеры и форму трансплантата, формируют комбинированный кожно-мышечно-костный лоскут, состоящий из двух фрагментов на единой сосудистой ножке -...
Тип: Изобретение
Номер охранного документа: 0002617886
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c5f4

Способ получения корундовой керамики, содержащей металлический никель

Изобретение относится к области керамических материалов на основе корунда, использующихся в технике в качестве режущего инструмента, как носитель для никелевых, платиновых и палладиевых катализаторов, керамических мембран, применяемых для очистки сточных вод и др. Способ получения корундовой...
Тип: Изобретение
Номер охранного документа: 0002618768
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c873

Способ профилактики постторакотомического болевого синдрома в онкохирургии

Изобретение относится к медицине и может быть использовано для профилактики постторакотомического болевого синдрома (далее - ПТБС) в онкохирургии. Для этого за сутки до операции назначают перорально антиконвульсант прегабалин по 75 мг 2 раза/сутки и 75 мг за 2 часа до операции. Затем на...
Тип: Изобретение
Номер охранного документа: 0002619212
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.cb36

Кольцевая щелевая антенна

Изобретение относится к радиотехнике и может быть использовано в радиосистемах передачи информации, предъявляющих требования высокой степени электромагнитной совместимости конструктивных элементов системы, например, в малогабаритных космических аппаратах (КА). Решаемой задачей является...
Тип: Изобретение
Номер охранного документа: 0002620126
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cc5c

Карбонаткальциевый цемент для заполнения костных дефектов

Изобретение относится к медицине и может быть использовано для пластической реконструкции поврежденных костных тканей. Карбонаткальциевый цемент для заполнения костных дефектов характеризуется тем, что для его получения используют порошок кристаллической фазы карбоната кальция – кальцита, и...
Тип: Изобретение
Номер охранного документа: 0002620549
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.d1f0

Способ фотодинамической терапии неонкологических косметических дефектов кожи

Изобретение относится к медицине, а именно к дерматологии и косметологии, и может быть использовано при лечении неонкологических косметических поражений кожи. Осуществляют аппликационное нанесение на пораженные участки кожи лица фотосенсибилизатора на основе 5-аминолевулиновой кислоты. Спустя...
Тип: Изобретение
Номер охранного документа: 0002621845
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d50f

Способ эндомикроскопической диагностики раннего центрального рака легкого

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для эндомикроскопической диагностики раннего центрального рака легкого. Способ включает проведение через инструментальный канал бронхоскопа конфокального лазерного эндоскопического датчика для эндомикроскопии в...
Тип: Изобретение
Номер охранного документа: 0002622208
Дата охранного документа: 13.06.2017
+ добавить свой РИД