×
25.08.2017
217.015.9db4

Результат интеллектуальной деятельности: Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности, а именно к реактору переработки газового углеводородного сырья для получения синтез-газа, который может быть использован в газохимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов, углеводородов и синтетического моторного топлива. Реактор содержит корпус в виде цилиндрического канала круглого или прямоугольного сечения, футерованный изнутри огнеупорной керамикой, не менее двух отсеков, в которые установлены перпендикулярно оси корпуса не менее двух модулей, включающих оснастку, круглого или прямоугольного сечения, футерованную огнеупорной керамикой и помещенную в нее мембрану, выполненную из материала, обладающего смешанной электронно-ионной проводимостью, снабженную входом и выходом, при этом вход соединен с общим коллектором подачи воздуха, а каждый выход соединен с общим коллектором выхода обедненного по кислороду воздуха, мембрана может быть выполнена монолитно либо в форме кольцевого коллектора с перемычками и решетки в виде трубчатых каналов, сопряженных в узлах пересечения, либо в форме двух прямоугольных коллекторов и решетки, состоящей из крест-накрест соединенных трубчатых каналов, сопряженных в узлах пересечения, причем h<

Изобретение относится к химической промышленности, а именно к устройству переработки газового углеводородного сырья для получения синтез-газа, который может быть использован в газохимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов, углеводородов и синтетического моторного топлива.

Известен мембранный модуль, установленный в серии в дополнительном корпусе в виде цилиндрического канала, размещенном в основном корпусе высокого давления реактора для получения синтез-газа. Каждый модуль содержит набор параллельно установленных в оснастке полых планарных мембран, выполненных из материала со смешанной электронно-ионной проводимостью, снабжен входом и выходом и имеет внешнюю реакционную зону (патент US №7556675, МПК B01D 53/32, 2009 г.).

Известен также реактор для получения синтез-газа, содержащий корпус высокого давления и размещенный в нем дополнительный корпус в виде цилиндрического канала, в котором установлены в серии мембранные модули, каждый из которых содержит установленный в оснастке набор параллельно уложенных полых планарных мембран, выполненных из материала со смешанной электронно-ионной проводимостью, и имеет вход для подачи кислородсодержащего газа и выход для отвода обедненного по кислороду газа, а также имеет внешнюю реакционную зону. При этом все входы и выходы модулей объединены в два общих коллектора. Дополнительный корпус имеет вход, обеспечивающий подачу газа, содержащего углеводородное сырье, и выход, обеспечивающий выход полученного синтез-газа (патент US №7556675, МПК B01D 53/32, 2009 г.).

Основным недостатком известного реактора является сложность поддержания равномерной температуры, а значит одинаковой эффективности работы мембран в реакционной зоне, обусловленная склонностью мембран, изготовленных из оксидов со смешанной электронно-ионной проводимостью, к неконтролируемому разогреву, поскольку кислородная проницаемость мембран возрастает с температурой, а возрастающее вследствие повышения проницаемости поступление кислорода в реакционную зону, в свою очередь, увеличивает температуру мембран, при этом затруднен отвод тепла из центра реакционной зоны. Недостатком известного реактора также является наличие большого числа узлов герметизации, что снижает надежность работы реактора, а также наличие основного корпуса с высоким давлением внутри, что усложняет конструкцию реактора.

Таким образом, перед авторами стояла задача - разработать более простую и надежную конструкцию реактора для получения синтез-газа, обеспечивающую устранение эффекта температурной неоднородности в реакционной зоне реактора за счет снижения неблагоприятного взаимного теплового влияния мембран и улучшения условий отвода тепла из центра реакционной зоны.

Поставленная задача решена в конструкции модуля реактора для получения синтез-газа, содержащего оснастку и помещенную в нее мембрану, выполненную из материала, обладающего смешанной электронно-ионной проводимостью, например, состава La1-xSrxFe1-yCryO3, где 0,4≤x≤0,6 и 0≤y≤0,4, снабженную входом и выходом, в котором мембрана монолитно выполнена в форме кольцевого коллектора с перемычками и решетки в виде трубчатых каналов, сопряженных в узлах пересечения, причем h<<l, где h - толщина стенки канала, l - длина канала, при этом мембрана имеет внешнюю реакционную зону, расположенную между поверхностью мембраны и металлической сеткой, закрепленной с внешней стороны модуля, при этом оснастка имеет круглое сечение и футерована огнеупорной керамикой.

Поставленная задача также решена в конструкции модуля реактора для получения синтез-газа, содержащего оснастку и помещенную в нее мембрану, выполненную из материала, обладающего смешанной электронно-ионной проводимостью, например, состава La1-xSrxFe1-yCryO3, где 0,4≤x≤0,6 и 0≤y≤0,4, снабженную входом и выходом, в котором мембрана монолитно выполнена в форме двух прямоугольных коллекторов и решетки, состоящей из крест-накрест соединенных трубчатых каналов, сопряженных в узлах пересечения, причем h<<l, где h - толщина стенки канала, l - длина канала, один из коллекторов соединен с входом модуля и с входным отверстием каждого канала, а второй коллектор соединен с выходом модуля и выходным отверстием каждого канала, при этом мембрана имеет внешнюю реакционную зону, расположенную между поверхностью мембраны и металлической сеткой, закрепленной с внешней стороны модуля, а оснастка имеет прямоугольное сечение и футерована огнеупорной керамикой.

Поставленная задача также решена в конструкции реактора для получения синтез-газа, содержащего корпус в виде цилиндрического канала, футерованный изнутри огнеупорной керамикой и имеющий вход и выход, не менее двух модулей, включающих оснастку и помещенную в нее мембрану, выполненную из материала, обладающего смешанной электронно-ионной проводимостью, например, состава La1-xSrxFe1-yCryO3, где 0,4≤x≤0,6 и 0≤y≤0,4, снабженную входом и выходом, при этом вход соединен с общим коллектором подачи воздуха, а каждый выход соединен с общим коллектором выхода обедненного по кислороду воздуха, в котором корпус круглого или прямоугольного сечения имеет не менее двух отсеков, расположенных на расстоянии не менее, чем d, где d - толщина модуля, в которые установлены перпендикулярно оси корпуса не менее двух модулей, каждый из которых содержит оснастку и помещенную в нее мембрану, выполненную из материала, обладающего смешанной электронно-ионной проводимостью, снабженную входом и выходом, в котором мембрана монолитно выполнена в форме кольцевого коллектора с перемычками и решетки в виде трубчатых каналов, сопряженных в узлах пересечения, причем h<<l, где h - толщина стенки канала, l длина канала, при этом мембрана имеет внешнюю реакционную зону, расположенную между поверхностью мембраны и металлической сеткой, закрепленной с внешней стороны модуля, при этом оснастка имеет круглое сечение и футерована огнеупорной керамикой, или не менее двух модулей, каждый из которых содержит оснастку и помещенную в нее мембрану, выполненную из материала, обладающего смешанной электронно-ионной проводимостью, снабженную входом и выходом, в котором мембрана монолитно выполнена в форме двух прямоугольных коллекторов и решетки, состоящей из крест-накрест соединенных трубчатых каналов, сопряженных в узлах пересечения, причем h<<l, где h - толщина стенки канала, l - длина канала, один из коллекторов соединен с входом модуля и с входным отверстием каждого канала, а второй коллектор соединен с выходом модуля и выходным отверстием каждого канала, при этом мембрана имеет внешнюю реакционную зону, расположенную между поверхностью мембраны и металлической сеткой, закрепленной с внешней стороны модуля, а оснастка имеет прямоугольное сечение и футерована огнеупорной керамикой.

При этом между модулями могут быть установлены датчик контроля состава газа и форсунки.

В настоящее время из патентной и научно-исследовательской литературы не известны конструктивные элементы мембранных модулей и реактора для получения синтез-газа, разработанные авторами предлагаемого технического решения.

На фиг. 1 изображен модуль реактора для получения синтез-газа, мембрана которого выполнена в виде решетки, состоящей из сопряженных пересекающихся трубчатых каналов, и кольцевого коллектора.

На фиг. 2 изображен модуль реактора для получения синтез-газа, мембрана которого выполнена в виде решетки, состоящей из крест-накрест соединенных трубчатых каналов, и содержащий два коллектора, один из которых соединен с входом модуля и с входным отверстием каждого канала, а второй - соединен с выходом модуля и выходным отверстием каждого канала.

На фиг. 3 изображен реактор получения синтез-газа.

Модуль, изображенный на фиг. 1, содержит керамическую мембрану 1, выполненную монолитно в виде решетки, состоящей из параллельных трубчатых каналов 2, сопряженных в узлах 3, и кольцевого коллектора 4 с входом 5 для подачи кислородсодержащего сырья, например воздуха, и выходом 6 для отвода газа, например, воздуха, обедненного по кислороду. Кольцевой коллектор 4 имеет разделительные перемычки 7. Пространство между внутренней стенкой модуля и наружной поверхностью решетчатой мембраны 1 заполнено катализатором 8 для парциального окисления метана, который фиксирован при помощи металлической сетки 9. Модуль футерован огнеупорной керамикой 10. Оснастка 11 выполнена, например из металла.

Модуль, изображенный на фиг. 2, содержит керамическую мембрану 1, выполненную монолитно в виде решетки, состоящей из крест-накрест расположенных трубчатых каналов 2, сопряженных в узлах 3, и двух прямоугольных коллекторов 4, один из которых имеет вход 5 для подачи кислородсодержащего сырья, например воздуха, а другой - имеет выход 6 для отвода воздуха, обедненного по кислороду. Пространство между внутренней стенкой модуля и наружной поверхностью решетчатой мембраны 1 заполнено катализатором 8 для парциального окисления метана, который фиксирован при помощи металлической сетки 9. Модуль футерован огнеупорной керамикой 10. Оснастка 11 выполнена, например, из металла.

Реактор, изображенный на фиг. 3, состоит из корпуса 20 в виде стальной трубы круглого или прямоугольного сечения с входом для подачи углеводородного сырья 12 и выходом 13 для отвода полученного синтез-газа, оснащенного отсеками 14 для установки модулей 15, содержащих оснастку 11, и помещенные в нее керамические мембраны 1 с кольцевым или прямоугольными коллекторами 4 с входом 16 общего коллектора 18 для подачи воздуха, соединенного с входами 5 кольцевых или прямоугольных коллекторов каждого из модулей 15, и выходом 17 общего коллектора 19 для отвода обедненного по кислороду воздуха, соединенного с выходами 6 кольцевых или прямоугольных коллекторов каждого из модулей 15. Реактор футерован изнутри огнеупорной керамикой 10. Реактор может содержать от 2 до 100 мембранных модулей. Производительность одного модуля может составлять 0.5-3 м3 синтез-газа в час. Реакторы могут быть скомпонованы в сборки, включающие от 2 до 100 реакторов. Таким образом, реакторы предлагаемой конструкции могут быть использованы для создания установок производительностью от 5 до 30000 м3 синтез-газа в час.

Предлагаемый реактор работает следующим образом. Керамические мембраны могут быть изготовлены из материала со смешанной электронно-ионной проводимостью, например, состава La1-xSrxFe1-yCryO3, где 0,4≤x≤0,6 и 0≤y≤0,4. Реактор футерован изнутри огнеупорной керамикой 10. На вход 16 общего коллектора 18 подается воздух, после чего поступает на входы 5 модулей 15, после сепарации обедненный по кислороду воздух отводится через выходы 6, после чего поступает на выход 19 через общий коллектор 17. На вход 12 реактора подается метан, природный газ или другой реагент, требующий парциального окисления. Перед подачей реагент разогревают до температуры 700-900°С. При прохождении реагента через мембранный модуль 15 между внутренней и внешней поверхностью керамической мембраны создается большой градиент активности кислорода. Под действием этого градиента кислород через мембрану поступает в реактор и вызывает частичное окисление реагента на катализаторе 8, например Ni/Al2O3, который зафиксирован в модуле 15 при помощи металлической сетки 9. После прохождения через последний мембранный модуль 15 полученный в результате многостадийного парциального окисления синтез-газ отводится через выход реактора 13. На участках между мембранно-каталитическими модулями могут быть установлены датчики контроля состава газа и форсунки для подачи корректирующих реагентов (СН4, Н2О, СО2 или др.) с целью изменения состава продуктов реакции (введение Н2О увеличивает, а введение СО2 уменьшает соотношение Н2:CO в полученном синтез-газе), которые отводятся через выход реактора 13.

Таким образом, предлагаемая конструкция ректора и его элементов позволяет значительно повысить надежность работы за счет равномерного однослойного распределения мембран в сечении корпуса реактора, поскольку обеспечивает изотермичность мембранных модулей и одинаковую химическую нагрузку на все мембранные элементы. Разделение реакционной зоны на отдельные участки решает проблему поддержания равномерной температуры мембран и позволяет эффективно регулировать процесс парциального окисления. Кроме того, упрощается конструкция реактора за счет отсутствия внешнего корпуса, в котором в известном изобретении создается повышенное давление. Положительным эффектом является и возможность использования в одном реакторе мембран из различного материала (на входе метана, в наиболее жестких условиях можно использовать мембраны из материала с меньшей проницаемостью, но более высокой стабильностью).


Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа
Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа
Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа
Источник поступления информации: Роспатент

Показаны записи 51-60 из 103.
25.10.2018
№218.016.9605

Способ получения формиата железа (ii)

Изобретение относится к получению солей железа из органических кислот, в частности к соли двухвалентного железа из муравьиной кислоты. Предлагается способ получения формиата железа (II), включающий нагревание соединения железа и муравьиной кислоты в присутствии металлической стружки, где...
Тип: Изобретение
Номер охранного документа: 0002670440
Дата охранного документа: 23.10.2018
15.11.2018
№218.016.9da3

Способ получения нанокристаллического порошка титан-молибденового карбида

Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с...
Тип: Изобретение
Номер охранного документа: 0002672422
Дата охранного документа: 14.11.2018
24.11.2018
№218.016.a0ba

Германат редкоземельных элементов в наноаморфном состоянии

Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава CaLaEuGeO, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения. Предложенное изобретение позволяет расширить номенклатуру люминофоров белого свечения,...
Тип: Изобретение
Номер охранного документа: 0002673287
Дата охранного документа: 23.11.2018
26.12.2018
№218.016.ab38

Способ получения фотокаталитически активной пленки

Изобретение относится к области получения фотокаталитически активных полупроводниковых пленок. Предложен способ получения фотокаталитически активной пленки, включающий осаждение ионов Cu в виде оксида меди или гидроксида меди из раствора неорганической соли меди на подложку. Осаждение ведут из...
Тип: Изобретение
Номер охранного документа: 0002675808
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b0ee

Стоматологический гель для реминерализации твердых тканей зубов и способ реминерализации твердых тканей зубов

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для реминерализации твердых тканей зубов с целью профилактики и лечения кариеса в стадии пятна, гиперестезии твердых тканей зуба. Предлагаемый стоматологический гель содержит в качестве гидрофильной основы...
Тип: Изобретение
Номер охранного документа: 0002677231
Дата охранного документа: 16.01.2019
08.02.2019
№219.016.b84c

Способ модифицирования порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина,...
Тип: Изобретение
Номер охранного документа: 0002679156
Дата охранного документа: 06.02.2019
21.02.2019
№219.016.c51a

Способ получения лигатуры на основе алюминия

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий,...
Тип: Изобретение
Номер охранного документа: 0002680330
Дата охранного документа: 19.02.2019
23.02.2019
№219.016.c6da

Способ очистки вод, загрязненных тритием

Изобретение относится к области сорбционных технологий дезактивации воды и водных растворов и может быть использовано для обработки природной воды. Способ очистки воды, загрязнённой тритием, включает ее обработку природной или синтетической гуминовой кислотой в жидком или порошкообразном...
Тип: Изобретение
Номер охранного документа: 0002680507
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c6ee

Способ получения порошка оксида кобальта

Изобретение может быть использовано для получения катодных и анодных материалов литий-ионных аккумуляторов. Cпособ получения порошка оксида кобальта CoO включает нагревание исходной смеси кобальта азотнокислого 6-водного и гелирующего агента с последующим отжигом полученного порошка. Исходная...
Тип: Изобретение
Номер охранного документа: 0002680514
Дата охранного документа: 21.02.2019
03.03.2019
№219.016.d280

Способ получения мезопористого углерода

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(СНО) - термообрабатывают в инертной атмосфере при 500-750°С. Полученный...
Тип: Изобретение
Номер охранного документа: 0002681005
Дата охранного документа: 01.03.2019
Показаны записи 41-41 из 41.
29.08.2019
№219.017.c4bc

Глубокорыхлитель для обработки склоновых земель

Изобретение относится к области сельскохозяйственного машиностроения. Глубокорыхлитель (3) для обработки склоновых земель содержит раму с расположенными на ней стойками (5 и 6) рыхлителей с наральниками (7) и закрепленными на боковых гранях почвоподъемными пластинами – грунтоподъемниками (8)....
Тип: Изобретение
Номер охранного документа: 0002698280
Дата охранного документа: 27.08.2019
+ добавить свой РИД