×
25.08.2017
217.015.9bc4

Результат интеллектуальной деятельности: СПОСОБ ПОДГОТОВКИ СУСПЕНЗИИ НАНОЧАСТИЦ МЕТАЛЛОВ ДЛЯ НАРУЖНОГО И ВНУТРЕННЕГО ПРИМЕНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химико-фармацевтической промышленности, ветеринарии, сельскому хозяйству и представляет собой способ получения суспензии наночастиц меди для наружного применения на водной основе, характеризующийся тем, что осуществляют ультразвуковое диспергирование наночастиц меди в течение 30 мин с частотой 35 кГц с водным раствором католита с параметрами: Eh=-300 мВ, рН 7-8, стабилизированный аминокислотой треонин в количестве не менее 0,01 мас.% при температуре не выше 40°С. Изобретение позволяет получить стабильно биологически активную суспензию препарата наночастиц меди, не вызывающую токсического действия. 2 з.п. ф-лы, 2 ил.

Изобретение относится к медицине, ветеринарии, фармацевтической промышленности, сельскому хозяйству, рыбоводству и другим областям техники.

Способ представляет собой модель подготовки препаратов из наночастиц металлов на водной основе для наружного и внутреннего применения.

Наночастицы металлов и их соединения в настоящее время нашли широкое применение в различных областях, в том числе в биологии и медицине в качестве препаратов микроэлементов. Наличие низкой токсичности для организма в сравнении с широко применяемыми препаратами микроэлементов, высокая биодоступность, определяемая малыми размерами, явилась определяющим в их повсеместном применении [1, 2, 3, 4].

В этой связи определенный интерес представляют исследования, направленные на создание новых препаратов на основе наночастиц.

Одним из направлений в вопросе создания и совершенствования нанопрепаратов является уточнение размера наночастиц и способ их подготовки. Установлены различия в биологических свойствах препаратов, содержащих высокодисперсные частицы разного размера, уменьшение их размера повышает абсорбцию элемента [5, 6, 7].

Известен способ применения препарата наночастиц в виде мазей или свечей, характеризующийся пролонгированным действием и стабильностью при хранении [8].

Однако данный способ применения препарата на основе наночастиц является узконаправленным, применим для наружного применения, только в области фармакологии и требует при производстве нескольких дополнительных компонентов.

В связи с этим альтернативным решением является способ подготовки препаратов наночастиц на водной основе, позволяющей использовать препарат как для наружного, так и для внутреннего применения.

Для исследования нами были использованы наночастицы меди со следующими физико-химическими характеристиками: средний размер, имеющий сферическую форму, составляет 103±2 нм; содержание кристаллической меди в ядре частиц - 96±4,5%; оксида меди - 4±0,4%; толщина оксидной пленки на поверхности наночастиц - 6 нм [9, 10]. Наночастицы меди получали методом высокотемпературной конденсации на установке Миген-3 [11].

С целью повышения стабилизации полезных биологических и химических свойств водных препаратов высокодисперсных частиц меди вместо дистиллированной воды использовали электрохимически активированный католитный водный раствор со стабилизатором со следующими параметрами Eh=-300 мВ, рН 7-8. Стабилизатор представляет собой аминокислоту треонин в количестве не менее 0,01 мас. % [12, 13].

Электрохимическая активация воды осуществлялась на установке «ЭСПЕРО-1» Ташкентской фирмы.

Согласно изобретению предлагается на стадии подготовки суспензии осуществлять ультразвуковое диспергирование наночастиц меди с католитной водной средой, что улучшает смачивание наночастиц и дает возможность увеличить их удельную поверхность и, таким образом, снизить скорость осаждения и повысить равномерность распределении частиц в суспензии. Процесс ведут при температуре не выше 40°С. Соотношение компонентов суспензии определяется в зависимости от назначения.

Определение времени диспергирования суспензии наночастиц меди проводилось нами путем обработки ультразвуком частотой 35 кГц (f - 35 кГц, N - 300 Вт, А - 10 мкм) в течение 0,33; 0,66; 1; 1,5; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15 и 30 мин. Полученные образцы стерилизовали ультрафиолетом.

Определение морфометрических характеристик частиц в полученных образцах проводилось методом атомно-силовой микроскопии в контактном режиме с использованием мультимикроскопа SMM-2000 (ОАО «ПРОТОН-МИЭТ», Россия). Опытные образцы препарата меди в объеме 20 мкл наносили на свежий скол слюды и высушивали при комнатной температуре. В процессе сканирования использовались кантилеверы MSCT-AUNM (Pack Scientific Instruments, США) с жесткостью балки 0,01 Н/м и радиусом кривизны иглы 15-20 нм. Количественный морфометрический анализ полученных изображений проводили с использованием штатного программного обеспечения микроскопа.

Определение биологической активности полученных суспензий было изучено в тесте ингибирования бактериальной люминесценции. В качестве объекта использован генно-инженерный люминесцирующий штамм Есherichia coli K12 TG1, конститутивно зкспрессирующий luxСDАВЕ-гены природного морского микроорганизма Photobacterium leiongnathi 54D10, производство HBO «Иммунотех» (Россия, Москва) в лиофилизированном состоянии под коммерческим названием «Эколюм». Непосредственно перед проведением исследований данный препарат восстанавливали добавлением охлажденного электрохимически активированного католитного водного раствора со стабилизатором и стандартизировали до оптической плотности 0,3 при длине волны 600 нм. Суспензию выдерживали при температуре +2… +4°С в течение 30 мин, после чего доводили температуру бактериальной суспензии до 15-25°С.

Водные католитные суспензии наночастиц меди для оценки биологической активности готовились в концентрации 20 мМ, характеризующейся как биотическая в отношении живой клетки [14].

При проведении теста использовался алгоритм, аналогичный использованному Д.Г. Дерябиным с соавт. (2011) при анализе биотоксичности ионов, нано- и микрочастиц металлов. Для этого в ячейки 96-луночных планшетов вносили тестируемые препараты с суспензией люминесцирующих бактерий в соотношении 1:1, после чего планшет помещали в измерительный блок анализатора микропланшетного Infinite PRO F200 (TECAN, Австрия), осуществляющего регистрацию интенсивности свечения полученных смесей в течение 180 мин с интервалом 3 мин. Результаты влияния препарата наночастиц меди на интенсивность бактериальной биолюминесценции (I) оценивали с использованием формулы

,

где Ik и Io - интенсивность свечения контрольных к опытных проб на 0-й и n-й минутах измерения.

Статистическую обработку полученных данных проводили с использованием программного пакета «Statistica 6.0», включая определение средней арифметической величины (М) и стандартной ошибки средней (m). Достоверными считали результаты при Р≤0,05.

Проведенные нами исследования показали, что наиболее интенсивное разрушение агломератов наночастиц частиц меди на более мелкие происходит в первые 5-6 мин обработки ультразвуком, тогда как последующее увеличение времени диспергирования не приводит к значительным разрушениям агломератов наночастиц. Динамика значений размеров при увеличении времени воздействия ультразвуком показана на фиг. 1.

Агломераты препарата меди на основе электрохимически активированного антиокислительного католитного водного раствора со стабилизатором, полученные в результате диспергирования в течение первых 14 минут, были неоднородны по размерам.

Агломераты в образцах, подвергшихся обработке ультразвуком в течение 0,33-1,5 мин до 85%, были представлены частицами сферической формы размером от 200 до 980 нм. Средний размер агломераций наночастиц меди, полученных в течение первых 0,33 мин воздействия ультразвуком, составил 937±24,6 нм. Увеличение времени воздействия ультразвуком на опытные образцы от 2 до 14 мин позволило уменьшить размер с 515 до 200 нм. Препараты, полученные в результате обработки ультразвуком в течение 15 и 30 мин на 92 и 98%, были представлены отдельными наночастицами, на 8 и 2% агломератами, размером в среднем 200-400 нм.

Реализация теста ингибирования бактериальной биолюминесценции при контакте E.сoli TG1 с водными образцами препарата меди, полученными при диспергировании в течении 0,33-15 мин. в концентрации 20 мМ и содержащими агломераты наночастиц, показала отсутствие значимого изменения динамики свечения бактерий в сравнении с контролем. В тоже время оценка интенсивности биолюминесценции при контакте с водными образцами, полученными при обработке ультразвуком в течение 30 мин и содержащими наночастицы, показало проявление биологической активности препарата сохраняющейся в течение эксперимента.

Интенсивность свечения Е.соli с клонированными luxCDABЕ-генами Р. leiognathi при контакте с опытными образцами суспензий препарата меди, подвергшихся ультразвуковому воздействию в течение 0,33, 0,66, 1, 1,5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 и 30 мин, показана на фиг. 2; где контроль «K» представляет собой водный электрохимический активированный католитный раствор без внесения препарата меди.

Зависимость времени ультразвукового диспергирования суспензий наночастиц меди в водном католите на равномерность и однородность распределения отдельных наночастиц в нашем эксперименте показана интенсивностью свечения бактерий в течение 180 мин.

В результате проведенного эксперимента было установлено, что для получения однородных, биологически и химически активных препаратов наночастиц металлов на основе электрохимически активированного католитното водного раствора со стабилизатором, не оказывающих токсического действия, необходима обработка ультразвуковым излучением в течение 30 мин частотой 35 кГц.

Список литературы

1. Zhang I, Wang Н, Yan X, Zhang L. 2005. Comparison of short-term toxicity between Nano-Se and selenite in mice. LifeSci. Jan 21; 76(10):1099-109.

2. Hao L, Wang Z, Xing B. 2009. Effect of sub-acute exposure to ТiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinuscarpio). J EnvironSci (China); 21(10):1459-66.

3. Wang H, Sun X, Liu Z, Lei Z. 2014. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes. Nanoscale. May 7.

4. Rohner F, Ernst FO, Arnold M, Hilbe M, Biebinger R, Ehrensperger F, Pratsinis SE, Langhans W, Hurrell RF, Zimmermann MB. 2007. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. I Nutr.Mar; 137(3):614-9.

5. Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, Xu H, Wei H. 2014 Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale. Dec 11; 7(2):625-36. doi: 10.1039/c4nr05061d.

6. Cho WS, Kim S, Han BS, Son WC, Jeong J. 2009. Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett.; 191:96-102.

7. Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, . 2014. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell BiolToxicol. Feb; 30(1):1-16. doi. 10.1007/s10565-013-9265-y. Epub 2013 Nov 29.

8. Патент на изобретение RU №2296571 Ранозаживляющий состав и способ его получения. Опубликовано 10.04.2007.

9. Нотова С.В., Тимашева А.Б., Лебедев С.В., Сизова Е.А., Мирошников С.А. Элементы статус и биохимический состав крови лабораторных животных при внутримышечном введении аспаргината и наночастиц, меди // Вестник Оренбургского государственного университета, №122, 2013. - С. 159-163.

10. Яушева Е.В., Мирошников С.А., Иван О.В. Оценка влияния наночастиц металлов на морфологические показатели периферической крови животных // Вестник Оренбургского государственного университета, №12, 2013. - С. 203-207.

11. Ген М.Я., Миллер А.В. Авторское свидетельство СССР №814432, 1981. Бюл. №11.

12. Патент на изобретение RU №2234945 Стабилизатор водного раствора и водосодержащего сырья с самопроизвольно изменяющимися окислительно-восстановительными свойствами. Опубликовано 27.08.2004.

13. Патент на изобретение RU №2367513 Способ получения полимерного покрытия на поверхности наночастиц. Опубликовано 20.09.2009.

14. Дерябин Д.Г., Алешина Е.С., Дерябина Т.Д., Ефремова Л.В. 2011. Биологическая активность ионов, нано- и микрочастиц Сu и Fe в тесте ингибирования бактериальной биолюминесценции // Вопросы биологической, медицинской и фармацевтической химий. №6. С. 31-36.


СПОСОБ ПОДГОТОВКИ СУСПЕНЗИИ НАНОЧАСТИЦ МЕТАЛЛОВ ДЛЯ НАРУЖНОГО И ВНУТРЕННЕГО ПРИМЕНЕНИЯ
СПОСОБ ПОДГОТОВКИ СУСПЕНЗИИ НАНОЧАСТИЦ МЕТАЛЛОВ ДЛЯ НАРУЖНОГО И ВНУТРЕННЕГО ПРИМЕНЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 51-58 из 58.
18.05.2018
№218.016.510b

Способ повышения продуктивности цыплят-бройлеров

Изобретение относится к птицеводству, в частности к способу повышения продуктивности цыплят-бройлеров. Способ включает скармливание в составе основного рациона экстракта коры дуба в суточной дозе 2,5 мл/кг живой массы и фермента Глюколюкс при норме ввода 5 г/10 кг корма в течение всего периода...
Тип: Изобретение
Номер охранного документа: 0002653372
Дата охранного документа: 08.05.2018
25.06.2018
№218.016.66ff

Способ повышения стрессоустойчивости животных и сокращения потерь продукции при транспортировке и предубойном содержании

Изобретение относится к области животноводства. Способ предусматривает скармливание бычкам за 5-7 суток до транспортировки с концентратами смесь дилудина и энергосила при соотношении компонентов 1:3 в дозе 40-50 мг на 1 кг живой массы. Обеспечивается сокращение потерь продукции при...
Тип: Изобретение
Номер охранного документа: 0002658360
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.671c

Способ повышения продуктивности цыплят-бройлеров путем внутримышечных инъекций лиозолей наноформ железа и меди в смеси со стабилизированным электрохимически активированным водным раствором католита

Изобретение относится к сельскому хозяйству, а именно к способу повышения продуктивности цыплят-бройлеров при совместном применении внутримышечных инъекций наноформ железа и меди с электрохимически активированным католитом. Способ включает внутримышечные инъекции в бедро цыплят-бройлеров в...
Тип: Изобретение
Номер охранного документа: 0002658391
Дата охранного документа: 21.06.2018
06.12.2018
№218.016.a3fe

Способ повышения питательности грубых кормов при скармливании их крупному рогатому скоту

Изобретение относится к отрасли сельского хозяйства, в частности к способу повышения питательности грубых кормов, используемых в составе рационов крупного рогатого скота. Способ включает кавитационную обработку грубых кормов на ультразвуковом кавитаторе, диапазон частот звуковых колебаний...
Тип: Изобретение
Номер охранного документа: 0002674068
Дата охранного документа: 04.12.2018
09.05.2019
№219.017.49ef

Способ комплектования стада мясного скота желательного типа

Изобретение относится к животноводству, в частности к мясному скотоводству. Способ комплектования стада мясного скота желательного типа обеспечивает определение и прогнозирование племенной ценности коров, а также учитывает селекционную значимость и экономическую характеристику отдельных...
Тип: Изобретение
Номер охранного документа: 0002687183
Дата охранного документа: 07.05.2019
29.05.2019
№219.017.637f

Способ определения генетического потенциала молочной продуктивности тёлок крупного рогатого скота мясных пород

Изобретение относится к области биотехнологии и представляет собой способ определения генетического потенциала молочной продуктивности телок крупного рогатого скота мясных пород, включающий отбор цельной крови у телок в возрасте не менее 3 месяцев, выделение ДНК с установлением генотипов...
Тип: Изобретение
Номер охранного документа: 0002688336
Дата охранного документа: 21.05.2019
19.06.2019
№219.017.83f8

Способ применения гамма-окталактона в качестве ингибитора системы "кворум сенсинга" luxi/luxr типа у бактерий

Изобретение относится к микробиологии и фармацевтике и может быть использовано для применения гамма-окталактона в качестве ингибитора системы «кворум сенсинга» LuxI/LuxR типа у бактерий. Изобретение обеспечивает предупреждение и лечение бактериальных инфекций растений, животных и человека,...
Тип: Изобретение
Номер охранного документа: 0002691634
Дата охранного документа: 17.06.2019
14.07.2019
№219.017.b413

Способ подготовки корма для скармливания жвачным животным

Изобретение относится к отрасли сельского хозяйства, в частности к способу производства кормовых высокоэнергетических жировых добавок жвачным животным. Способ включает барогиротермическую обработку масложировой кормовой смеси, мас. %: ячменя дробленого - 81,5, фуза-отстоя – 8, стеариновой...
Тип: Изобретение
Номер охранного документа: 0002694409
Дата охранного документа: 12.07.2019
Показаны записи 71-80 из 91.
29.05.2020
№220.018.220a

Способ отбора бычков мясных пород с высоким потенциалом весового роста по элементному составу шерсти

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора бычков мясных пород с высоким потенциалом весового роста по элементному составу шерсти, включающий настриг образца шерсти массой не менее 0,4 г с верхней части холки в 8-месячном возрасте с дальнейшей...
Тип: Изобретение
Номер охранного документа: 0002722045
Дата охранного документа: 26.05.2020
05.06.2020
№220.018.2426

Способ повышения переваримости корма при включении в рацион бычков на откорме ультрадисперсных частиц диоксида кремния

Изобретение относится к сельскому хозяйству. Способ повышения переваримости корма включает введение в рацион бычков на откорме ультрадисперсных частиц SiO с гидродинамическим радиусом 388±37 нм в дозе 13 мг/кг корма. Повышается переваримость в эксперименте in vitro на 4,6%, в исследовании in...
Тип: Изобретение
Номер охранного документа: 0002722730
Дата охранного документа: 03.06.2020
18.06.2020
№220.018.2781

Способ отбора жеребцов арабской чистокровной породы с высокой выживаемостью сперматозоидов до и после криоконсервации по элементному составу волос

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора жеребцов арабской чистокровной породы с высокой выживаемостью сперматозоидов до и после криоконсервации по элементному составу волос включает настриг требуемого образца волос по массе не менее 0,24 г с...
Тип: Изобретение
Номер охранного документа: 0002723622
Дата охранного документа: 16.06.2020
21.06.2020
№220.018.286e

Способ отбора жеребцов арабской чистокровной породы с высокой криоустойчивостью спермы по концентрации кадмия в волосах с гривы

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора жеребцов арабской чистокровной породы с высокой криоустойчивостью спермы по концентрации кадмия в волосах с гривы, включающий настриг требуемого образца волос по массе не менее 0,24 г с участка гривы в...
Тип: Изобретение
Номер охранного документа: 0002723951
Дата охранного документа: 18.06.2020
31.07.2020
№220.018.3958

Способ выращивания цыплят-бройлеров

Изобретение относится к отрасли сельского хозяйства, в частности к способу выращивания цыплят-бройлеров. Способ характеризуется тем, что осуществляют однократное суточное скармливание экстракта коры дуба в дозе 1,0 мл/кг живой массы в течение всего периода выращивания птицы, способствующее...
Тип: Изобретение
Номер охранного документа: 0002728254
Дата охранного документа: 28.07.2020
06.08.2020
№220.018.3ce1

Способ возделывания картофеля по интенсивной технологии на орошаемых землях степной зоны южного урала

Изобретение относится к области сельского хозяйства. Способ предусматривает осеннюю обработку почвы, внесение минеральных удобрений и нарезание гребней, весеннюю посадку картофеля, уход за растениями, полив и уборку. Предпосадочную подготовку клубней к посадке осуществляли в электрохимически...
Тип: Изобретение
Номер охранного документа: 0002729128
Дата охранного документа: 04.08.2020
12.04.2023
№223.018.4717

Способ размножения красного дождевого червя породы eisenia foetida

Изобретение относится к сельскому хозяйству, а именно к биоспособу размножения беспозвоночных червей. Способ предусматривает поддержание оптимальных параметров показателей корма-субстрата, в котором выводят червей, - влажности, кислотности и температуры путем увлажнения субстрата...
Тип: Изобретение
Номер охранного документа: 0002750879
Дата охранного документа: 05.07.2021
20.04.2023
№223.018.4c82

Способ производства сливочного масла путем катодной электрохимической активации молока

Изобретение относится к молочной промышленности и сельскому хозяйству. Предложен способ производства сливочного масла, в котором осуществляют приемку молока, его первичную обработку путем проведения катодной электрохимической активации молока в течение 15 минут, при которой значение...
Тип: Изобретение
Номер охранного документа: 0002759028
Дата охранного документа: 09.11.2021
20.04.2023
№223.018.4c89

Способ снижения эндогенных потерь макроэлементов в организме цыплят-бройлеров

Изобретение относится к отрасли сельского хозяйства, в частности к способу снижения эндогенных потерь кальция, калия и магния в грудных мышцах, и кальция, натрия – в бедренных мышцах у цыплят-бройлеров. Способ характеризуется тем, что цыплятам-бройлерам, находящимся на дефицитной по минералам...
Тип: Изобретение
Номер охранного документа: 0002759845
Дата охранного документа: 18.11.2021
20.04.2023
№223.018.4c97

Способ повышения молочной продуктивности коров и улучшения качества молока

Изобретение относится к области биотехнологии. Изобретение представляет собой способ повышения среднесуточных удоев и улучшения качества молока у коров, характеризующийся тем, что животным дополнительно включают в корм 2,5 г хитозана с наночастицами серебра в дозировке 0,005 г на голову в...
Тип: Изобретение
Номер охранного документа: 0002751960
Дата охранного документа: 21.07.2021
+ добавить свой РИД